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Abstract

In college courses dealing with material that requires mathematical rigor, the adoption of a
machine-readable representation for formal arguments can be advantageous. Students can focus
on a specific collection of constructs that are represented consistently. Examples and coun-
terexamples can be evaluated. Assignments can be assembled and checked with the help of an
automated formal reasoning system. However, usability and accessibility do not have a high
priority and are not addressed su�ciently well in the design of many existing machine-readable
representations and corresponding formal reasoning systems. In earlier work [Lap09], we attempt
to address this broad problem by proposing several specific design criteria organized around the
notion of a natural context: the sphere of awareness a working human user maintains of the
relevant constructs, arguments, experiences, and background materials necessary to accomplish
the task at hand. We report on our attempt to evaluate our proposed design criteria by deploy-
ing within the classroom a lightweight formal verification system designed according to these
criteria. The lightweight formal verification system was used within the instruction of a common
application of formal reasoning: proving by induction formal propositions about functional code.
We present all of the formal reasoning examples and assignments considered during this deploy-
ment, most of which are drawn directly from an introductory text on functional programming.
We demonstrate how the design of the system improves the e↵ectiveness and understandability
of the examples, and how it aids in the instruction of basic formal reasoning techniques. We
make brief remarks about the practical and administrative implications of the system’s design
from the perspectives of the student, the instructor, and the grader.

1 Introduction

In the classroom instruction of topics that require mathematical rigor, there exist many benefits
to adopting a formal representation. These include reusability, automatic evaluation of examples,
and the opportunity to employ formal reasoning systems. Such systems can o↵er anything from
detection of basic errors, such as unbound variables and type mismatches, to full confidence in an
argument because it is verifiably constructed using the fundamental principles of a mathematical
logic. There exist a variety of such systems, and many of these have been surveyed and compared
along a variety of dimensions [Wie03]. However, to date, broad accessibility and intuitive interface
design has not been a priority in the design of formal reasoning systems that can provide these
benefits. On the contrary, instructors hoping to employ a formal reasoning system in the classroom
are presented with a variety of obstacles, both superficial and fundamental. Consequently, many
instructors today continue to ignore such systems. In the literature in most domains of computer
science and mathematics there are only isolated attempts to include machine-verified proofs of novel
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research results, and in only a few mathematics and computer science courses are such systems
employed for presenting material or authoring solutions to assignments.

To address the aforementioned issues, we have proposed in earlier work [Lap09] principles for
the design of formal reasoning systems capable of providing automatic verification and assistance
to users authoring formal arguments. We argue that by following these principles it is possible to
assemble formal reasoning systems that have better accessibility and useability. These principles re-
quire the adoption of what we consider lightweight design. In this context, lightweight design is not
exclusively a passive principle that consists of loosening restrictions. A system that is lightweight
from the user’s perspective might also provide robust and natural interfaces for search and in-
teraction, might give the user many degrees of freedom in deciding how precisely or extensively
arguments are verified, and might actively anticipate and tighten what the user is trying to do us-
ing appropriate heuristics. This strategy is based on our own understanding and experience as well
as the observations that motivated other recent projects with similar goals. In particular, the need
for natural interfaces (both superficial and functional) and the value of appropriate heuristics have
been recognized to varying degrees by the designers of the Tutch proof checker [ACP01], the Scunak
mathematical assistant system [Bro06], the ForTheL language and SAD proof assistant [VLPA08],
the EPGY Theorem-Proving Environment [MRS01], the ⌦MEGA proof verifier [SBF+02], and in
the work of Sieg and Cittadini [SC05]. One author, commenting on designing an interface for repre-
senting proofs, opines that “we seem to be stuck at the assembly language level” [Wen99]. Both the
need for a natural interface as well as the value of a lightweight design are also recognized by some
in the model checking community, such as the creators of the Alloy modelling language [Jac02].

1.1 Natural Contexts in Lightweight Formal Verification

We focus our e↵orts by considering the notion of a natural context : the sphere of awareness a
working human user maintains of the relevant constructs, arguments, experiences, and background
materials necessary to accomplish the task at hand. The relevant characteristics of a natural context
in such a scenario are (1) its size (encompassing a wide array of experiences, potentially inconsistent
or unrelated), and (2) a flexible and powerful interface that allows easy exploration, querying,
and short-term adjustments (using not just reference or index but also structure). In explicitly
recognizing the possibility that a natural context can contain distinct, inconsistent collections of
experiences (such as di↵erent logical systems), we are in part inspired by the notion of a cognitive
context found in literature on formal ontologies [PB08].

This notion can be a useful guide within the realm of formal reasoning. We hypothesize that a
lightweight formal reasoning system can be successful if it can e�ciently simulate (i.e. maintain)
an intuitive, rich, and relevant context for the user, and furthermore, if it allows the user to interact
with this context in a familiar manner. A concrete example of a natural context familiar to those
working in programming language design is a data structure that maintains type signatures and
constraints. Its interface consists of the programming language syntax, the means for producing
status or error messages, the type inference algorithm, and any constraint solver supporting that
algorithm.
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1.2 Deployment in the Classroom

In this work, we report on our experience deploying within the classroom a variant of our formal
reasoning system1 designed according to our principles [Lap09]. This was done within a regular un-
dergraduate curriculum course2 on the principles of programming languages. Among the topics this
course typically covers are pure functional programming and algebraic reasoning about functional
programs, including the assembly of inductive proofs of propositions about programs. The formal
reasoning system was used to present examples of proofs by induction, and was distributed to stu-
dents within the framework of a homework assignment. Students used the verifier to assemble their
proofs. Each student’s solutions were graded according to a superficial inspection of the student’s
formal assumptions and an automated verification of the student’s formal assertions. Shortly after
the assignment, the students completed a classroom examination in which they had to assemble a
formal proof using paper and pencil (without access to the formal reasoning system).

1.3 Overview

In Section 2 we present in their complete form the relevant examples and assigned problems. It is
worth noting that the text of this section of the document can be supplied directly to the verification
system we employed (including all the LATEX markup and exposition). Readers may initially want
to skip over this section and briefly go over the observations in Sections 3 and 4, as these will provide
a context within which to examine the examples. In Section 3 we review the cases in which the
formal reasoning system supplied to students was successful in supporting common formal reasoning
techniques. We also discuss how its design and implementation contributed to this success, and
where further improvements to the design are necessary. In Section 4 we make brief and general
observations about our deployment of the formal reasoning system in the classroom. Finally, we
review related work in Section 5 and present our conclusions and proposals for future work in Section
6.

2 Examples of Verifiable Formal Proofs

We list all of the examples presented to students, as well as all of the assigned problems and their
solutions. Each example or problem involves a proof by induction of a formal proposition about a
collection of one or more functions. Most examples are drawn directly from an introductory text on
functional programming [Tho99]. In this article, we delimit the mathematical notation with pound
signs (# ... #) to avoid invoking the LATEX parser. We note that the contents of this section can
be supplied directly to and verified by the formal reasoning system provided to students.

2.1 Examples with recursively-defined lists

The option to perform lightweight verification makes it possible to focus on certain aspects of the
formal reasoning and proof authoring process without being bogged down in other aspects. For
instance, the following examples make no explicit mention of the induction principle on lists, or
of an explicit equality function on lists. In fact, there is no mention of types. Nevertheless, some

1The Ibis verifier, implemented in Haskell and distributed in the form of source code.
2The course in question was the fall 2009 iteration of “Concepts of Programming Languages”, a required Computer

Science curriculum course for advanced undergraduates within the Computer Science Department at the Boston
University College of Arts and Sciences.
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verification is possible: one can gain more confidence that a proof is correct by confirming that
the proof can be verified automatically, and then briefly inspecting the assumptions and superficial
structure of the proof. This brief manual inspection is significantly more simple than a manual
proof verification.

The following introduces the two symbols corresponding to an empty list and a list head, as well
as assumptions corresponding to several functions typically defined for within functional languages
for recursively-defined lists.

\vbeg

Introduce #cons, nil#.

Introduce #length, append, map, foldr#.

Assume # length nil = 0#.

Assume #\forall x,xs. length (cons x xs) = 1 + length xs#.

Assume #\forall ys. append nil ys = ys#.

Assume #\forall x,xs,ys. append (cons x xs) ys = cons x (append xs ys)#.

Assume #\forall f. map f nil = nil#.

Assume #\forall f,x,xs. map f (cons x xs) = cons (f x) (map f xs)#.

Assume #\forall f,b. foldr f b nil = b#.

Assume #\forall f,b,x,xs. foldr f b (cons x xs) = f x (foldr f b xs)#.

\vend

These functions (sometimes under a di↵erent name) can be found in the Haskell [Je99] standard
library.

2.1.1 Mapping an identity

Suppose that the identity function is introduced.

\vbeg

Introduce #idf#.

Assume #\forall x. idf x = x#.

\vend

We want to show that for all lists, applying map idf to the list will return an equivalent list. The
base case is a direct application of the base case definition for map.

\vbeg

Assert #map idf nil = nil#.

\vend

To argue that the inductive step is correct, we show that if we assume that our desired result holds
for some list xs, it also holds for a list that has an additional element x added to the beginning of
the list.

\vbeg

Assert

#
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\forall x,xs.

map idf xs = xs

\Rightarrow cons x (map idf xs) = cons x xs

\wedge map idf (cons x xs) = cons (idf x) (map idf xs)

\wedge idf x = x

\wedge map idf (cons x xs) = cons x (map idf xs)

\wedge cons x (map idf xs) = cons x xs

\wedge map idf (cons x xs) = cons x xs

#.

\vend

Notice that in both the base case assertion, and in the sequence of equations in the proof of the
inductive step, it is never necessary to explicitly reference which property of equality is being applied,
or which assumptions is being instantiated. The user is free to supply comments for steps that she
feels might require explanation, but can safely omit this information in cases where this would only
serve to clutter the argument.

2.1.2 Folding over an associative operator

Suppose we have an associative binary operator and corresponding identity.

\vbeg

Introduce #op, id#.

Assume #\forall x. op id x = x#.

Assume #\forall x. op x id = x#.

Assume #\forall x,y,z. op x (op y z) = op (op x y) z#.

\vend

We want to show that for any two lists, concatenating then folding with respect to the operator is
the same as folding each of the two lists, and then concatenating the results. We first present the
base case.

\vbeg

Assert

#

\forall ys.

append nil ys = ys

\wedge foldr op id ys = foldr op id (append nil ys)

\wedge foldr op id nil = id

\wedge op id (foldr op id ys) = foldr op id ys

\wedge op id (foldr op id ys) = foldr op id (append nil ys)

\wedge op (foldr op id nil) (foldr op id ys) = foldr op id (append nil ys)

#.

\vend

Next, we present the inductive step.

\vbeg

Assert

#

\forall x, xs, ys.
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op (foldr op id xs) (foldr op id ys) = foldr op id (append xs ys)

\Rightarrow

op x (op (foldr op id xs) (foldr op id ys)) = op x (foldr op id (append xs ys))

%-- right side

\wedge foldr op id (cons x (append xs ys)) = op x (foldr op id (append xs ys))

\wedge (append (cons x xs) ys) = cons x (append xs ys)

\wedge foldr op id (cons x (append xs ys)) = foldr op id (append (cons x xs) ys)

%-- left side

\wedge op x (op (foldr op id xs) (foldr op id ys)) = op (op x (foldr op id xs)) (foldr op id ys)

\wedge foldr op id (cons x xs) = op x (foldr op id xs)

\wedge op x (op (foldr op id xs) (foldr op id ys)) = op (foldr op id (cons x xs)) (foldr op id ys)

\wedge op (foldr op id (cons x xs)) (foldr op id ys) = foldr op id (append (cons x xs) ys)

#.

\vend

2.1.3 Identity of append

Suppose we want to show that the empty list is also an identity for the function that appends lists.
The definition of the function already shows that it is a left identity, so all that remains is to show
by induction that it is a right identity. The base case is trivial.

\vbeg

Assert #append nil nil = nil#.

\vend

The inductive case is only slightly more complex.

\vbeg

Assert

#

\forall x,xs.

append xs nil = xs

\Rightarrow

cons x (append xs nil) = cons x xs

\wedge (append (cons x xs) nil) = cons x (append xs nil)

\wedge append (cons x xs) nil = cons x xs

#.

\vend

2.1.4 Associativity of append

Suppose we want to show that the function for appending lists is associative. We only need to
perform induction over the first argument to the function because the second argument is never
decomposed within the function’s definition. We begin with the base case.

\vbeg

Assert

#

\forall ys, zs.

append ys zs = append ys zs

6



\wedge append nil ys = ys

\wedge append nil (append ys zs) = append ys zs

\wedge append (append nil ys) zs = append nil (append ys zs)

#.

\vend

We present the inductive step.

\vbeg

Assert

#

\forall x, xs, ys, zs.

append (append xs ys) zs = append xs (append ys zs)

\Rightarrow

%-- put "x" on both sides

cons x (append (append xs ys) zs) = cons x (append xs (append ys zs))

%-- right side

\wedge append (cons x xs) (append ys zs) = cons x (append xs (append ys zs))

%-- left side

\wedge (append (cons x xs) ys) = cons x (append xs ys)

\wedge append (append (cons x xs) ys) zs = append (cons x (append xs ys)) zs

\wedge append (cons x (append xs ys)) zs = cons x (append (append xs ys) zs)

\wedge append (append (cons x xs) ys) zs = append (cons x xs) (append ys zs)

#.

\vend

2.1.5 User-defined functions

We write a proof drawn directly from an example in an introductory text on functional programming
[Tho99]. If our formal reasoning system were restricted to a straightforward search algorithm that
verifies logical expressions (without native support for algebraic manipulation of equations), the
following assumptions might be needed. However, they are not necessary for our formal reasoning
system. We reproduce them here for the sake of completeness.

Assume \forall x. 0 = 2 * 0

Assume \forall x,y,z. (z*x) + (z*y) = z*(x+y)

We now present the example. Suppose we have defined the following two functions.

\vbeg

Introduce #sum, doubleAll#.

Assume # sum nil = 0#.

Assume #\forall x,xs. sum (cons x xs) = x + (sum xs)#.

Assume # doubleAll nil = nil#.

Assume #\forall z,zs. doubleAll (cons z zs) = cons (2 \cdot z) (doubleAll zs)#.

\vend
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We now want to prove that for any list of integers, it is the case that doubling the sum of its
elements is equivalent to computing the sum of the doubled elements of the list. We start with the
base case.

\vbeg

Assert

#

0 = 2 \cdot 0

\wedge sum nil = 2 \cdot (sum nil)

\wedge sum (doubleAll nil) = 2 \cdot (sum nil)

#.

\vend

Next, we present the inductive step.

\vbeg

Assert

#

\forall x,xs.

sum (doubleAll xs) = 2 \cdot (sum xs)

\Rightarrow

(2 \cdot x) + sum (doubleAll xs) = (2 \cdot x) + 2 \cdot (sum xs)

%-- We first rewrite the left side.

\wedge (2 \cdot x) + (2 \cdot (sum xs)) = 2 \cdot (x + sum xs)

\wedge sum (cons x xs) = x + sum xs

\wedge (2 \cdot x) + (2 \cdot (sum xs)) = 2 \cdot (sum (cons x xs))

%-- Next, we rewrite the right side.

\wedge sum (cons (2 \cdot x) (doubleAll xs)) = (2 \cdot x) + sum (doubleAll xs)

\wedge doubleAll (cons x xs) = cons (2 \cdot x) (doubleAll xs)

\wedge sum (doubleAll (cons x xs)) = (2 \cdot x) + sum (doubleAll xs)

%-- Finally, we put the two sides back together.

\wedge sum (doubleAll (cons x xs)) = 2 \cdot (sum (cons x xs))

#.

\vend

2.1.6 The append and length functions

For this next example, we again present a few assumptions that are not required by our formal
reasoning system.

Assume \forall x. 0 + x = x

Assume \forall x,y,z. x+(y+z) = (x+y)+z

Suppose we want to prove that taking the lengths of two lists and adding them is equivalent to
appending those same two lists and then computing the length of the result. We present the base
case.

\vbeg

Assert

#
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\forall ys.

append nil ys = ys

\wedge length (append nil ys) = length ys

\wedge 0 + length ys = length ys

\wedge length (append nil ys) = 0 + length ys

\wedge length (append nil ys) = length nil + length ys

#.

\vend

Next, we present the inductive step.

\vbeg

Assert

#

\forall x,xs,ys.

length (append xs ys) = length xs + length ys

\Rightarrow

1 + length (append xs ys) = 1 + (length xs + length ys)

%-- We first rewrite the left side.

\wedge length (cons x (append xs ys)) = 1 + length (append xs ys)

\wedge append (cons x xs) ys = cons x (append xs ys)

\wedge length (append (cons x xs) ys) = 1 + length (append xs ys)

%-- Then we rewrite the right side.

\wedge 1 + (length xs + length ys) = (1 + length xs) + length ys

\wedge length (cons x xs) = 1 + length xs

\wedge 1 + (length xs + length ys) = length (cons x xs) + length ys

%-- Finally, we put the two sides back together

\wedge length (append (cons x xs) ys) = length (cons x xs) + length ys

#.

\vend

2.2 Examples with other other datatypes

2.2.1 Naturals

Suppose we have the following data type definition (e.g. in Haskell), representing natural numbers.
The Z constructor corresponds to 0, and the S constructor corresponds to (+1).

data Nat = Z | S Nat

Furthermore, suppose we defined addition on objects of type ”Nat” using the following function:

plus Z n = Z

plus (S m) n = S (plus m n)

If we want to model this situation mathematically, we would introduce all the defined entities (the
constructors and function), and then write universally quantified equations to represent the function
definition.
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\vbeg

Introduce #Z, S, plus#.

Assume #\forall n. plus Z n = Z#.

Assume #\forall m,n. plus (S m) n = S (plus m n)#.

\vend

Now, suppose we want to show that for any x, we also have that

plus x Z = x

The equations alone don’t tell us this directly, so we need to prove it by induction. In other words,
we have to show that the above statement holds for all possible x of type Nat by first showing that
the x = Z case holds, and then showing that if it holds for some x, then it holds for S x.

First, we verify that the base case holds. The below assertion is verified automatically because
it is merely an application of the first assumption above in which the n in \forall n. ... is
instantiated to Z.

\vbeg

Assert #plus Z Z = Z#. %-- by definition of "plus"

\vend

Now, we review two operators from logic: implication (\Rightarrow) and conjunction (\wedge).
These are understood by the verifier in the usual way. For example, we could assert that equality
is transitive.

Assert #\forall x,y,z.

x = y \wedge y = z \Rightarrow x = z#.

The above should be read as “for any x,y,z, if x is equal to y and y is equal to z then x is equal
to z”. The \wedge operator has precedence over the \Rightarrow operator, so no parentheses are
necessary. We can now use these operators to construct the inductive case of our proof.

\vbeg

Assert

#

\forall x.

plus x Z = x %-- inductive hypothesis

\Rightarrow %-- "implies that"

S (plus x Z) = S x %-- apply "S" to both sides

\wedge plus (S x) Z = S (plus x Z) %-- by definition of "plus"

\wedge plus (S x) Z = S x %-- by transitivity of equality

#.

\vend

The above can now be summarized for concision in another assertion.

\vbeg

Assert #\forall x. plus x Z = x \Rightarrow plus (S x) Z = S x#.

\vend

We can also restate both cases if we want to do so.
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\vbeg

Assert

#

plus Z Z = Z

\wedge \forall x. plus x Z = x \Rightarrow plus (S x) Z = S x

#.

\vend

Thus, we’ve proven our result by induction over x. Note that the verifier supports “sequenced”
equalities:

Assert #\forall x,y,z. x = y = z \Rightarrow x = z#.

This might sometimes be a more concise way to do a proof. For example, the above proof of the
inductive case could look a little shorter if it is written in the following way:

\vbeg

Assert

#

\forall x.

plus x Z = x

\Rightarrow

S (plus x Z) = S x

\wedge plus (S x) Z = S (plus x Z) = S x

#.

\vend

3 Supporting Common Formal Reasoning Techniques

The formal manipulations and proof techniques required for the presented examples can be split into
three categories: application of properties of basic logical operators (conjunction, implication, and
universal quantification), application of properties of equality, and algebraic manipulations involving
arithmetic operators. The design of our formal reasoning system provides relatively robust support
(at least within the context of classroom instruction) for each kind of formal manipulation.

3.1 Logical Operators

The inference rules by which the formal reasoning system operates (and which define its behavior
with respect to logical operators) are presented in full in earlier work on the formal reasoning system
[Lap09]. We briefly review one inference rule in particular whose form is essential for the examples
we present in this work.

3.1.1 Sequential Conjunction

As described in more detail in earlier work [Lap09], our formal reasoning system supports a se-
quential interpretation of the standard conjunction operator. This interpretation is consistent with
straightforward formulations of the sequent calculus [Gen69]. The interpretation of conjunction is
roughly as follows: if the left-hand argument is determined to be true, it is added to the context
under which the right-hand argument is checked. For readers who are interested in a more precise
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reminder, we reproduce below the introduction rules for the two variants of conjunction. Let � by
the context (containing information about existing assumptions and bound variables).

[^-Intro]
� ` e1 � ` e2

� ` e1 ^ e2

[^-Seq-Intro]
� ` e1 � [ {e1} ` e2

� ` e1 ^ e2

The second form of the rule is a consequence of the first when it combined with rules governing
implication (the exact derivation can be found in earlier work [Lap09]). This sequential form of
conjunction is essential to the usability of the interface provided by our formal reasoning system.
It allows the user to author arguments consisting of a sequence of equations in which each equation
is verified to be a consequence of one or more of the equations found earlier in the sequence. All of
the formal arguments presented in this work are assembled in this manner.

3.2 Properties of Equality

The formal reasoning system we deployed is designed to simulate a natural context, and one essential
characteristic of natural contexts is the presence of a reflexive, symmetric, and transitive equality
relation. This relation is simulated using a component of the assumption context that maintains
equivalence classes of expressions. This component is described in its basic form in the initial
description of the formal reasoning system [Lap09] and developed in more detail in later related
work [LH09].

This feature makes it possible to verify several very common algebraic manipulations involving
equations. Any direct manipulation that takes advantage of these properties can be verified.

Introduce #x,y,z#.

Assert # x + y = x + y #.

Assert # ( x = y /\ y = z ) => x = z #.

Assert # x = y => y = x #.

Furthermore, some manipulations implied by these properties can also be verified. For example, it is
possible to substitute a portion of an equation with an equivalent expression. In the example below,
the asserted expression corresponds to the first assumption except that (y + z) is substituted with
(v + w) and c is substituted with u.

Introduce #x,y,z,a,b,c,u,v,w#.

Assume # x + (y + z) = (a + b) + c #.

Assume # y + z = v + w #.

Assume # c = u #.

Assert # x + (v + w) = (a + b) + u #.

It is also possible to perform the same operation to both sides of an equation. In the example below,
we add z to both sides of an equation.

Introduce #x,y,z,a,b#.

Assume # x + y = a + b #.

Assert # z + (x + y) = z + (a + b) #.

However, some intuitive manipulations are not yet possible with the current feature set of the formal
reasoning system, and we mention these below in Section 3.4.
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3.3 Algebraic Manipulations with Arithmetic Operators

The formal reasoning system we utilized is also capable of modelling algebraic manipulations involv-
ing the arithmetic operators corresponding to addition, substraction, multiplication, and division.
In particular, the system can recognize applications of the associativity, commutativity, and identity
laws of addition and multiplication, and the distributive law between addition and multiplication
when the expression being distributed is a constant. This capability is described briefly in work
describing the formal reasoning system [Lap09]. The examples in Sections 2.1.5 and 2.1.6 demon-
strate how this capability allows users of the formal reasoning system to avoid explicitly stating (or
retrieving from a library) a few of these common algebraic laws.

3.4 Missing Features

There were two noteworthy instances in which the intuitive expectations of users were not met
by the formal reasoning system we deployed. This suggests that the natural context that most
users possess has these capabilities, and thus, any formal reasoning system whose design is oriented
around simulating a natural context should also have these capabilities.

3.4.1 Composition of Two Kinds of Manipulation

The first is application of the symmetry of equality under a universal quantifier. Students expected
(and rightly so, in our opinion) that proof scripts of the following form would be automatically
verifiable:

Assume 8x, e1(x) = e2(x)
Assert 8y, e2(y) = e1(y)

This demonstrates that when querying their own natural context, students are able to compose
elimination of the universal quantifier with application of the symmetry of equality. Thus, it is
necessary that a system that simulates a natural context be capable of inferring that this step has
been performed.

3.4.2 Implicit Application of Induction Principles

The second instance was more substantial: the lightweight proof that the students were asked to
construct did not allow the students to use the statement being proven in subsequent proofs. This
was not necessary for the assignment, but it does illustrate a di↵erence between the use of lightweight
verification system by domain experts, and the use of such systems by students. An expert could
decide whether he is satisfied with a lightweight proof, and introduce the theorem proven as an
assumption. On the other hand, students must be given strict guidelines in this situation because
they may not have the experience to make these decisions.

While we avoided this issue by assembling an assignment in which reuse of the proven statements
was not needed, we still failed to meet the intuitive expectations of the students. One way to
resolve this is to ask the students to write a more complete proof within our system (involving
the explicit introduction and application of propositions corresponding to the induction principles
over each of the data types involved) so that the proven statement can be used in subsequent
arguments. However, we believe the approach that is more consistent with our general principles is
to eventually introduce automated support for this capability. The students should indeed be able
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to use the statements proven, but should not need to do more work than was required of them in
our version of the assignment.

3.4.3 On Lightweight Formal Verification and Limiting Formal Reasoning Systems

Some features of the formal reasoning system we deployed were never used in any examples or
assigned problems, including those supporting manipulations involving disjunction and existential
quantification. All of the examples presented in this report can be verified by a formal reasoning
system that does not support manipulations involving disjunction and existential quantifiers. We
accomplished this by requiring only lightweight verification of arguments, and by selecting only
those examples that involve the proof of a simple universal proposition. We did not explicitly state
or require the use of any induction principles within the exercises.

This approach had several advantages. Students were required to comprehend fewer formal
concepts, and could thus use their time and e↵ort to study the basic properties of implication,
conjunction, and universal quantification (as well as the properties of equality). It also put less
pressure on the verification system: providing support for a variety of manipulations involving the
introduction and elimination of existential quantifiers (as well as disjunction) is a di�cult design
task. Users did not need to deal with any inadequacies the system might have in this regard.
This demonstrates that while a limited verification system may not seem interesting from the
perspective of an expert logician, it can seem quite reasonable to a domain expert unfamiliar with
more general forms of logic. Our experience suggests that it is possible to have a limited but
successful formal reasoning system that supports only a subset of the inference rules governing
common logical operators.

4 Deployment and Evaluation

We briefly comment on how the design of the formal reasoning system a↵ected administrative and
practical issues from various perspectives.

4.1 Instruction

We observed a few pedagogical advantages to using our formal reasoning system within classroom
instruction. The presence of an application that provides direct feedback about formal arguments
makes it possible to easily present and reinforce a precise list of valid formal manipulations. The
use of a parser combinator library in the implementation of the formal reasoning system’s parser (as
discussed briefly in previous work [Lap09]) makes it possible to support multiple parsing regimes,
including one that corresponds almost exactly to the syntax of the particular programming language
in which the formally analyzed code is written. Admittedly, the parser combinator library that we
used [LM01] was designed with Haskell in mind, but we believe its flexibility would make it similarly
easy to adjust the system for formal reasoning exercises involving other functional programming
languages.

4.2 Usability from the Perspective of Students

One frequent concern about any sort of automated search or inference done by a formal reasoning
system is that the user will become frustrated because she cannot predict what the system might
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be inferring, or what the system’s limitations are. However, within this deployment we have found
that no such frustration occurs when the system’s capabilities are intuitive and can be described
in a succinct and straightforward manner. In particular, the formal manipulations enabled by the
automated context search capability, the sequential variant of the conjunction inference rule, and
the automatic verification capability for common manipulations on equations were all easily and
quickly understood by students.

4.3 Grading

It is important to observe that despite the use of a lightweight approach, the task of grading was
simplified substantially. When reviewing a student’s solutions to the assigned problems, the grader
only needed to verify manually that the student’s formal argument had the appropriate superficial
form. In our particular examples, this amounted to confirming that the student’s solutions did not
introduce any assumptions beyond those which we provided, that the asserted arguments used only
sequential conjunction (rather than, for example, implication), and that assertions corresponding to
both the base case and the inductive case of an argument were present. The grader was not required
to spend any e↵ort on the more daunting and intellectually taxing task of actually verifying that
each formal argument (which could vary from one student to the next) consisted of a sequence of
valid manipulations.

5 Related Work

The topic of this report lies on the boundaries between multiple research areas. There exist some
reports on attempts to utilize formal reasoning systems for classroom instruction. There also exists
a great deal of work related to reasoning formally about both functional and imperative programs.
These are both covered in Section 5.1. Our report also aims to demonstrate the benefits of a
lightweight verification approach. This argument relates to the more general topic of usability and
accessible design of formal reasoning systems, so we review related work in this area in Section 5.2.

5.1 Classroom Instruction of Reasoning about Programs

There have been attempts to teach courses on the topic of program verification since the advent of
Hoare logic [Hoa69]. Currently, there exist graduate-level, and some undergraduate-level, courses
that cover the specific topic of rigorous machine-assisted formal reasoning and proof authoring using
systems such as Coq [PV97]. There also exists a great deal of material demonstrating how systems
such as Coq can be used to reason formally about both imperative programs [CMM+09, BC04], and
functional programs [Cha09, Mol97]. Other formal reasoning tools specifically designed for reasoning
about functional code [Col96] exist, as well. Some have reported on their experience using similar
systems in the classroom [WS04]. Our report is distinguished from this large body of work by our
emphasis on a lightweight formal verification approach using a formal reasoning system whose design
is oriented around simulating a natural context. There is also work in separate communities on using
formal methods in the instruction of the more general task of software development [OP98], and
systems such as Alloy [Jac02] have also been deployed in the classroom.3 Our work is distinguished
from this by our application of the lightweight approach for very local and specific results about

3A list of courses is found at http://alloy.mit.edu/community/courses.
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individual functions within functional code usually addressed by heavyweight systems used in the
first body of work.

The EPGY Theorem-Proving Environment [MRS01] is designed for teaching algebra within a
classroom setting at the levels of middle and high school. Its design provides extensive support
for algebraic manipulations and computations. However, its design does not directly support a
lightweight approach to verification: manipulations are strictly enforced, and authoring arguments
requires the use of an interactive interface.

5.2 Formal Verification Systems

5.2.1 Accessibility and a Lightweight Approach

Several formal reasoning systems exist whose development was motivated by observations and goals
similar to those that motivated the development of our system, described in further detail in earlier
work [Lap09]. Our system can be viewed in part as further development and integration of the
various ideas incorporated into those systems, and furthermore as an example of which priorities
and features of those systems we believe should be emphasized (and which are disadvantageous and
may need to be removed or modified) if we hope to improve the practical usefulness and accessibility
of verification systems.

In scenarios in which there are established conventions for notation, it is important that these
conventions be exploited to the greatest extent possible. Our observations are shared by the design-
ers of Scunak [Bro06], who refer to the need for “naturality” in a system’s concrete representation.
Our adoption of a notation that very closely resembles the functional programming language used
in the course made the transition from programming to formal reasoning almost e↵ortless for the
students. Only a few new basic constructs needed to be introduced, and these were intuitive.

The designers of the ForTheL language and SAD proof assistant [VLPA08] share our motivations
and suggest similar principles to ours. The design of the ForTheL language includes high-level
constructs similar to the assumption and assertion statements in the formal reasoning system we
deployed. However, the high-level constructs for managing proofs in ForTheL are reminiscent
of proof scripts for interactive theorem provers and could potentially present an obstacle to new
users. Enforcing high-level constructs like proofs and theorems inhibits the user from employing
a lightweight approach. The examples in this report demonstrate that the option to leave out a
high-level proof structure (such as entirely avoiding the use of an explicit inductive principle) makes
a lightweight approach possible, and that a lightweight approach can still provide some advantages
of formal verification. Furthermore, the usefulness of a superficial verification of individual symbolic
manipulations (regardless of semantics or high-level structure) in turn demonstrates the importance
of developing a wider spectrum of verification methods, both highly rigorous and lightweight.

In providing a familiar syntax and supporting verification of formal manipulations without
explicit reference to them, the design of our system is similar to Scunak [Bro06]. However, it
is worth noting that we disagree with the claim made by the designers of Scunak that proofs of
fundamental concepts, such as algebraic distribution laws, are a good touchstone for measuring the
success of proof verification systems. On the contrary, focusing on such proofs distracts from e↵orts
directed towards recognizing the more essential reasoning activities we demonstrate in the examples
presented in this report. For verification systems used at the college level and beyond, distributivity
is one of many natural, implicit manipulations that should be supported without requiring any user
e↵ort. We believe that incongruously complex proofs of results whose importance is di�cult to
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motivate at the college level may not constitute e↵ective or compelling examples for classroom
instruction of formal reasoning techniques.

Finally, our experience shows us that at least when coupled with a lightweight approach, a
formal reasoning system that does not provide step-by-step interaction for proof construction can
be e↵ective within the classroom. As has been observed before [ACP01], interactive proof systems
that give step-by-step feedback and direction to a user can actually be inconveniently rigid. The
user is required to learn how to direct the interactive system, cannot easily “jump around” while
constructing a proof, and cannot resort to a lightweight approach under which only some parts of
the proof are correct.

5.2.2 Native Support

The formal reasoning system we used provides native support for verifying chains of algebraic
manipulations on equations, and this feature is recognized by the authors of the Tutch system
[ACP01] as essential to making further progress in the design of e↵ective formal reasoning systems.
While providing native support has drawbacks when it comes to guaranteeing consistency and makes
it more di�cult to show a system is fully trustworthy, it can also greatly improve the usability of
a formal reasoning system because the system designer has greater flexibility in removing any
obstacles a user might face. Making this tradeo↵ in favor of native support allowed us to design and
deploy a system that natively supports equality, equational reasoning, sequential reasoning, and
some algebraic properties of arithmetic operators. Because these correspond to intuitions already
present in the a college student’s own natural context, little e↵ort was required on the part of a
student to grasp and subsequently utilize these capabilities.

6 Conclusions and Future Work

We have reported our observations about our deployment within the classroom of a lightweight
formal reasoning system. We have identified a variety of specific ways in which a design in accordance
with the principles of a natural context contributes to the usability of a formal reasoning system (at
least in a narrow context restricted to classroom examples). Finally, we have discussed the practical
implications of using such a formal reasoning system within the classroom.

Further work on this issue falls into one of two categories: improvements to the formal reasoning
system, and further experimentation through deployment in the classroom. We have identified sev-
eral specific capabilities that a formal reasoning system that simulates a natural context must have
(such as automated recognition of the application of an induction principle), and these capabilities
must be introduced into future versions of our formal reasoning system. Because one of our goals
in developing design principles for formal reasoning systems is the creation of systems that are
accessible to a variety of communities (students, instructors, and researchers), we must deploy the
system in courses on other topics or in other areas (particularly in undergraduate-level mathematics
and philosophy courses).
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