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Abstract

We describe the definition, design, implementation, and deployment of a multi-party com-
putation protocol and supporting web-based infrastructure. The protocol and infrastructure
constitute a software application that allows groups of cooperating parties, such as companies
or other organizations, to collect aggregate data for statistical analysis without revealing the
data of individual participants. The application was developed specifically to support a Boston
Women’s Workforce Council (BWWC) study of the gender wage gap among employers within
the Greater Boston Area. The application was deployed successfully to collect aggregate statis-
tical data pertaining to compensation levels across genders and demographics at a number of
participating organizations.

1 Introduction

Modern organizations, including companies, educational institutions, and governments agencies,
have been collecting and analyzing data pertaining to their internal operations for some time and
to great effect, such as in evaluating performance or improving efficiency. While this data is of
great value to the organizations themselves, it is likely that novel insights valuable to multiple
organizations, to policymakers, or to society at large can be derived by combining data from these
multiple organizations and analyzing it as a single corpus.

Unfortunately, the data collected by organizations internally is often proprietary and confiden-
tial, and its release may be potentially deleterious to their interests. Furthermore, while organiza-
tions may have the option of releasing sensitive data selectively to specific agents entrusted with
its analysis, this presents a security risk: how will the data be physically transferred in a secure
way, how will it be housed during the analysis, and how will it be destroyed after an analysis is
complete?

Secure multi-party computation (MPC) techniques have been known for decades at least as
theoretical constructs [25], and recent efforts [19, 13, 16, 21, 23] are finally bringing us closer to
a point at which these techniques will be available to end-users (i.e., organizations interested in
collectively analyzing their sensitive data).

In this report, we describe the definition, design, implementation, and deployment of a multi-
party computation protocol and supporting web-based infrastructure for analyzing compensation
data (broken down by gender and demographics) from a collection of employer organizations.
The secure multi-party computation protocol utilized for this application is of relatively modest



mathematical sophistication: it allows multiple parties to compute a sum total of a collection of
secret quantities. Each participating party’s secret quantity is known only to that party and is
never revealed to any other individual party. Nevertheless, the sum is computed and can be made
available to all participants.

The definition of the protocol and the design and implementation of the software were influenced
heavily by the practical restrictions and challenges of the particular target application. Only
limited resources were available to develop the software itself, both in terms of time and funding.
Furthermore, the software was designed to be deployed easily and rapidly (i.e., requiring no setup,
no specialized hardware, and no specialized software) in order to minimize any hurdles that might
discourage participation. Finally, the software was designed to be used within a relatively narrow
time window by non-experts whose technical expertise did not need to go far beyond familiarity
with spreadsheet software and web browsing clients. All of these constraints presented difficulties
that are not usually addressed by protocol definitions, or even by existing MPC frameworks that
target users who have at least some technical expertise.

2 Protocol Definition

The protocol developed for this application is a variant of a technique that allows multiple parties
to collectively compute a sum of their own individual quantities without revealing those quantities
to one another [17].

2.1 Drawbacks and Security Definition

There is a practical drawback to the “secure sum” protocol in its original form: the participating
parties must all coordinate with one another to pass data in sequence from one party to another
so that it visits each party exactly once. From an implementation standpoint, this would require
a relatively sophisticated software infrastructure involving multiple client applications that would
all communicate with one another and maintain state throughout the duration of the computa-
tion. Assuming limited software development resource, this complexity could make the software
implementation process itself more difficult and the application more error-prone. The synchro-
nization requirement would also make it more difficult to schedule and coordinate participation
from a large number of parties, as each party would need to run the application for the duration
of the computation (which may span hours or days). Finally, the sequenced approach does not
support idempotent updates from participants; if even one participant makes an error and wishes
to resubmit their data, the entire protocol would need to be restarted.

There are other practical drawbacks to the original protocol that were not addressed by our
variant. In particular, collusion between two or more parties may reveal the secret data being
aggregated during the execution of the protocol. Also, a party may misbehave by submitting data
that is inaccurate or that corrupts the sum in a way that makes it difficult to derive meaning from
it (e.g., by submitting very large values that skew an aggregate metric such as an average). Thus,
the secure and correct operation of our protocol variant assumes that all participating parties have
an incentive not to deviate from the protocol and have secured their own private data on their own
premises.

The particular form of security that is guaranteed by our protocol variant is that any malicious
outside party that can observe and permanently store all the communications between any and
all participants will gain no information beyond the aggregate being computed. We exploit this
feature of the protocol in the implementation: the server used for housing the data communicated
between parties does not need to be secure and can be commodity hardware purchased from any
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third-party provider. The security of our protocol relies on RSA [22] or any equivalent public-key
cryptographic protocol.

2.2 Protocol Definition

The protocol requires the participation of three kinds of parties:

• the aggregator stores the data and enables communication between the participants (there is
only one aggregator and it need not be secure or trusted);

• the trusted party is computing the actual aggregate sum (there is only one trusted party,
and it must not collude with the aggregator or share any non-aggregate data with any other
party);

• a participant is one of the parties contributing private data to the aggregate computation
(the number of participants is finite and fixed for a single execution of the protocol, but is
otherwise not limited).

A single execution of the protocol, which we will call a session, requires some preparation by the
trusted party. The aggregator is fully automated, and the participants only need to submit their
data at least once at any point after the initial preparation step is completed by the trusted party
and before the final aggregate is computed by the trusted party. A protocol execution proceeds as
follows:

(1) the trusted party initiates the process by generating a private and public RSA key pair and
a unique session identifier, submitting the public key p to the aggregator, and sending the
session identifier j ∈ N to all the participants (the last step is only for ease of data organization
if there are multiple sessions1);

(2) we assume each of the n participants already possesses a rational number di ∈ Q where i
is the index of the participant and 1 ≤ i ≤ n (this is the participant’s contribution to the
aggregate sum computation), and that each participant performs the following steps at least
once2:

(a) generate a private random rational number mi ∈ Q which will act as the random mask,

(b) calculate ri = di + mi which will constitute the masked data,

(c) submit ri unencrypted to the aggregator by sending it over the untrusted network,

(d) retrieve p to encrypt mi to obtain ci so that only the trusted party can read it, and

(e) submit ci to the aggregator by sending it over the untrusted network;

(3) the aggregator computes the sum of the masked data values R =
∑n

i=1 ri to obtain the
aggregate masked data quantity R;

(4) the trusted party then performs the final steps of the protocol:

(a) retrieve R and all the c1, . . . , cn from the aggregator over the untrusted network,

1The session identifier can serve another purpose beyond data organization: as long as no malicious agent possesses
the session identifier, any data submitted by malicious agents will be ignored during the computation of the aggregate
at the end of the protocol.

2Each participant can perform step (2) as many times as they wish before step (3) occurs; the operation they
perform is idempotent if they always submit the same data.
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(b) decrypt the encrypted random masks ci using the private key to obtain the random
masks mi and compute the sum of the random masks M =

∑n
i=1mi to obtain the

aggregate mask M ;

(c) compute the difference D = R −M to obtain the true sum of the original unmasked
data D =

∑n
i=1 di, which can then be shared with any interested parties.

Note that the correctness of the protocol is ensured by the commutativity and associativity of
addition:

D = R−M

=
n∑

i=1

ri −
n∑

i=1

mi

=
n∑

i=1

(di + mi)−
n∑

i=1

mi

=

n∑
i=1

di +

n∑
i=1

mi −
n∑

i=1

mi

=

n∑
i=1

di

Note that the aggregator never sees the true random masks because they are always encrypted
using the trusted party’s public key, and the trusted party never sees the individual masked data
entries unless it violates its promise not to collude with the aggregator (one may choose to have
the aggregator keep a running total and immediately discard every masked data entry submitted
to it, but this is not a theoretical guarantee and merely makes it more difficult but not impossible
for a malicious trusted party to obtain that data).

The diagram in Figure 1 illustrates an example deployment of the protocol for two participants.

2.3 Example

To make the protocol more concrete, we consider an example with two participants: Alice and Bob.
We suppose that Alice possesses the secret quantity dAlice = 34 and Bob possess the secret quantity
dBob = 12. Alice and Bob can proceed as follows, each performing step (2):

(a) Alice generates a random mask mAlice = 65 and Bob generates a random mask mBob = 70;

(b–c) Alice and Bob compute their masked data values

rAlice = dAlice + mAlice

= 34 + 65

= 99

rBob = dBob + mBob

= 12 + 70

= 82

and submit them to the aggregator;

(d–e) Alice and Bob encrypt 65 and 70 to submit cAlice and cBob to the aggregator, respectively.
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Figure 1: Illustration of a deployment of the protocol implementation for two participants.

The aggregator then computes R = rAlice + rBob = 99 + 82 = 181 and stores this quantity. At
this point, the trusted party can retrieve and decrypt cAlice and cBob to obtain mAlice = 65 and
mBob = 70, and then it can also retrieve R = 181. The trusted party can then compute the sum:

dAlice + dBob = (rAlice −mAlice) + (rBob −mBob)

= (rAlice + rBob)− (mAlice + mBob)

= R− (mAlice + mBob)

= 181− (65 + 70)

= 181− 135

= 46

Since 34 + 12 = 46, the trusted party has computed the sum. However, the trusted party has
not seen the individual values rAlice and rBob, so it could not possibly recover the original data
quantities. Likewise, the aggregator has only seen the encrypted masks cAlice and cBob, so it could
not derive the true data quantities, either.

3 Client Interface and Back-end Server Implementations

The purpose of the software application is to allow a group of non-expert participants to execute
a session of the protocol defined in Section 2. In particular, the software application automates
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all portions of the protocol except the initiation of a session (which can be done with a single
manual click), the distribution of the session identifier (which are simply delivered to participants
via email), and the entry of participant data (participants must use the client-facing interface
to paste or enter the data before submitting). Since realistic scenarios involve not one numeric
quantity per participant but a collection or table of labelled quantities, the software application
actually implements the protocol in parallel on multiple labelled fields within a table. Beyond
these features, the software application was developed under the constraints already enumerated in
Section 2.1. These constraints informed the design and implementation decisions for the software
application.

The two main components of the application are (1) the back-end server that acts as the
aggregator and as the delivery mechanism for the client-facing interfaces, and (2) the client-facing
interactive interfaces to be used by the trusted party and participants. The server is implemented
using the Node.js [9, 26] framework and server-side data is stored within an instance of MongoDB
[6, 24]. The Node.js application interacts with that instance using the Mongoose module [7]. The
client-facing interface is implemented using JavaScript, employing the jQuery [4], Underscore.js [12],
Handsontable [3], and JSEncrypt [5] libraries, in particular.

As both the server and client applications are authored using JavaScript, critical components
such as the aggregate computation routines are shared between the components, reducing the like-
lihood of errors and facilitating maintenance and updates to the application. The actual fields
of the table displayed to users are programmatically generated and can be modified. The JSEn-
crypt library is used to employ 1024 bit RSA encryption for encrypting the participant masks.
The participant masks themselves are generated as arrays of pseudo-random numbers using the
window.crypto object [14], which uses a high amount of entropy from the host operating system
to ensure that any patterns that could be discovered in the generated numbers are minimized. Of
course, it is worth noting that if a participant uses a compromised implementation of a web browser,
the implementation of the window.crypto object may not conform to the published specification.

Figure 2: The participant (left) and trusted party (right) interfaces as they appear within a web
browser.

Figure 2 illustrates two of the primary web interfaces as they appear within a web browser
to the respective parties. The participant interface provides a familiar spreadsheet table that an
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Figure 3: The session tracking (left) and data unmasking (right) interfaces as they appear within
a web browser to the trusted party during a session and at the end of a session, respectively.

end-user can fill with data either manually or by pasting the data from another application. The
email address is hashed on the client side and this hashed value is used only as an index into
the server database, allowing each participant to submit more than once in a session (overwriting
their previous submissions). The trusted party interface allows the trusted party to start a session,
obtaining a session identifier and saving a private RSA key to their local storage. There are also two
other interfaces for the trusted party, shown in Figure 3: a session tracker that displays how many
participants submitted data, and a final unmasking and computation interface that requires them
to supply the private key to the local client interface running in their browser in order to compute
the final aggregate data. If too few participants have submitted their data, the application will
not allow the trusted party to compute the final aggregate data. Once the final aggregate data is
computed, it is displayed in the same familiar table format as the input table presented to individual
participants.

As we mentioned above in Section 2.1, the security of the server housing the database and
delivering the client interfaces over the web to user browsers is not required to ensure the security
of the overall protocol. Thus, all the interfaces are publicly accessible.

4 Conclusions and Future Work

The protocol and software application described in this work were deployed successfully in Spring of
2015 to collect compensation data for the purpose of pay-equity analytics [20, 15]. Most practical
issues deploying the software application involved browser version incompatibility, human error
in entering data, and the duration and scheduling of the session. The simplicity of the protocol
and its implementation was crucial in helping decision makers feel confident that they understood
its operation and the security guarantees and contingencies that participating entailed. At the
conclusion of the session, a group of about 40 employers was able to anonymously and securely
contribute sensitive data without having to share or release the data itself.

A more general-purpose platform enabling this type of privacy-preserving collective analysis has
far reaching potential for public initiative research studies. Such a platform can allow for larger,
more in-depth analyses and could accommodate other research needs where sensitive information
from multiple parties must be collectively processed in order to identify trends, diagnose prob-
lems, or test hypotheses. Areas of application range from smart cities [10], to genomics [8], to
cybersecurity [18, 11].

Deploying any such platform involves overcoming not only technical and logistical challenges,
but also challenges that may be appropriate to address under the umbrella of social science, orga-

7



nizational psychology, behavioral economics, or similar areas of study. One particular experience
we had deploying the application was that despite the guarantees provided by the protocol, some
participants still required that the trusted party and the operator of the aggregator sign a non-
disclosure agreement governing the individual data submitted by those participants, even though
that data contained no meaningful information content.
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