
Federated Code Auditing and Delivery for MPC

Frederick Jansen, Kinan Dak Albab, Andrei Lapets, and Mayank Varia

Boston University, Boston MA 02215, USA,
{fjansen, babman, lapets, varia}@bu.edu

Abstract. Secure multi-party computation (MPC) is a cryptographic
primitive that enables several parties to compute jointly over their collec-
tive private data sets. MPC’s objective is to federate trust over several
computing entities such that a large threshold (e.g., a majority) must
collude before sensitive or private input data can be breached. Over the
past decade, several general and special-purpose software frameworks
have been developed that provide data contributors with control over
deciding whom to trust to perform the calculation and (separately) to
receive the output. However, one crucial component remains centralized
within all existing MPC frameworks: the distribution of the MPC soft-
ware application itself. For desktop applications, trust in the code must
be determined once at download time. For web-based JavaScript appli-
cations subject to trust on every use, all data contributors across several
invocations of MPC must maintain centralized trust in a single code de-
livery service. In this work, we design and implement a federated code
delivery mechanism for web-based MPC such that data contributors only
execute code that has been accredited by several trusted auditors (the
contributor aborts if consensus is not reached). Our client-side Chrome
browser extension is independent of any MPC scheme and has a trusted
computing base of fewer than 100 lines of code.

Keywords: secure multi-party computation, web security, content de-
livery

1 Introduction

Secure multi-party computation (MPC) permits several entities to learn joint
information about their sensitive data. It has been studied for over 30 years
[12, 19, 20], with several libraries and packages developed over the past decade
that bring secure computing to clients on the web [6, 13] and the desktop [3, 5,
7,9,10,14]. It has been deployed for social good in areas like pay equity [6], tax
fraud detection [7], marketplace auctions [8], and many others.

The objective of MPC is not so much to eliminate the need to trust any
particular entity, but rather to federate trust across several computing parties.
However, all existing frameworks centralize one crucial operation: delivering the
code that performs MPC itself. Note that confidentiality of the data protected
by MPC relies upon the integrity of this code.

Our Contributions. In this work, we design and develop a workflow to federate
delivery of MPC software.1 We focus on web-based MPC deployments [6], where
audited software is of utmost importance due to the trust-on-every-use nature of
JavaScript delivery; however, we stress that our ideas apply equally well to the
trust-on-first-use nature of downloaded desktop software. Within our system,
data contributors rely upon the help of several services [15] who (1) deliver and
(2) audit MPC software. Contributors must obtain consensus from the auditors
they entrust before executing any code that will operate on their sensitive data.

Within our system, trust in the veracity of MPC software is scoped down to
two sources. First, data contributors must choose trustworthy code auditors; to
reduce the impact of misplaced trust, these decisions can be revoked easily at
any time. Second, contributors must rely upon our Chrome extension to execute
the consensus or majority vote protocol properly; to ease validation and inspire
confidence, the extension is open-source2 and designed with a small codebase.

2 Related Work

A variety of questions have been raised about whether it is prudent at all to rely
on cryptographic functionalities or features implemented within web applications
(e.g., using popular web languages and frameworks). One common concern fo-
cuses on the distinction between applications that require “trust on first use” vs.
applications hosted on the web that require “trust on every use” [4, 18]. How-
ever, contemporary platforms and environments (including both desktop and
mobile) exhibit many of the characteristics attributed to applications delivered
over the web (e.g., frequent and automatic updates to the application, libraries,
and even the underlying operating system). Thus, this may no longer be the
most important measure of the amount of trust invested into an application.

The challenge of ensuring or validating the authenticity and integrity of code
and scripts delivered to (and executed by) users can be addressed by a variety of
distinct and complementary techniques and technologies. Subresource integrity
(SRI) [2] involves validating web application assets served by a third party such
as a content delivery network. Variants of this approach have existed for almost
two decades (e.g., Netscape supported a technique for signing inline JavaScript
scripts [1]). These are complementary to our proposed technique, allowing an
application to ensure that imported third-party assets have not been modified
inappropriately. However, SRI stops the chain of trust at the point of the web
server (i.e., an attacker, whether in the form of a hacker, malicious hosting
provider, or even law enforcement, could compromise a server and simply re-
place the code that is delivered to the end user). Thus, both the source as well
as the SRI hash can be modified without anyone noticing. Our solution aims
to move the trust from a single server to a much smaller signed bootstrapping

1 While the scenario that motivates this work involves delivery of MPC software, the
technique we present can be used for delivery of any web application.

2 The source code for the implemented Chrome browser extension is available online
at https://github.com/multiparty/secure-code-delivery-extension.

extension and a set of auditors providing the hash of the correct code. Code sign-
ing [17] and, more generally, digital signature schemes serve the complementary
but distinct purpose of confirming the author of the delivered application and
that the application has not been modified after being signed. However, these
techniques complicate scenarios that involve application versioning and a need
for delivery of the most fresh version. They also require yet another PKI, and
are not supported natively by browsers for the purpose of signing and verifying
the delivered code. Recent proposals include a cloud-based secure data exchange
marketplace [11]. This is similar to our own vision of an ecosystem of modular
functionalities that can be federated and delivered by incentivized entities [15]
(discussed in more detail in Section 3), though in our view such functionalities
(including the one presented in this work) can exist outside of a cloud setting.

3 The Secure Multi-Party Computation Ecosystem

MPC is an interactive protocol involving several participants who are connected
via a networking medium that supports secure point-to-point links. We describe
below several distinct roles [15] for MPC participants. We stress that the roles
are often composable; that is, one entity can inhabit multiple roles if desired.

1. Several data contributors who supply the sensitive data to be analyzed.
2. An analyst who specifies the calculation to perform on the input data.
3. One or more recipients who receive the result of computing the analytic.
4. A compute service that provides the computational resources and network

connectivity to compute the analytic in a privacy-preserving manner.
5. A code delivery service that provides the software necessary for contributors

to encode and upload their data to the compute parties.
6. A code auditing service that attests to the authenticity of the code to perform

secure computation. The confidentiality of the contributors’ data and the
computation’s integrity rely on the trustworthiness of the delivered code.

Most existing MPC frameworks explicitly instantiate the first four roles and
provide some configurability over their choices. Moreover, because contributors
actively choose whether to participate in an instance of MPC, they effectively
have control over which analysts, recipients, and compute services to trust. How-
ever, MPC applications to date use a single (i.e., centralized) service that delivers
the JavaScript code in a web-based MPC system [6] or the source code or pack-
aged binary in a desktop-based MPC system; the responsibility and effort of
auditing the software often implicitly falls on the data contributors themselves.

We envision two possible workflows to expose and federate this trust. First,
one can have several different audited delivery services that each perform the
auditing and code delivery roles. Second, one can simply have a single deliv-
ery service and several auditors who supply a hash of the code that they have
validated; this method retains federation for confidentiality and integrity but
centralizes availability (i.e., the single delivery service is easier to DoS). Either
way, we stress that contributors need not put their faith in the same set of audi-
tors; instead, each contributor should only use the auditing services she trusts.

4 Implementation

We implemented a signed Google Chrome extension that (1) allows the appli-
cation to be hosted on an untrusted server and (2) allows verification of the
JavaScript code by multiple auditors (with a majority vote deciding whether to
execute the code). The lightweight extension has fewer than 100 lines of code and
requires only two permissions (defined in advance): sending requests to external
servers and accessing the current open tab. It provides a pop-up panel attached
to a button in Chrome’s toolbar (a.k.a. a browser action) into which the user
can enter the application URL. The auditing/delivery services’ URLs are either
encoded in the original URL or pre-defined inside the extension. The extension
fetches the application code as well as the SHA-256 hash over SSL/TLS from the
auditors’ delivery services. The hashes are subsequently compared with the hash
of the page’s source code. If a majority of the auditors provide a matching hash,
the extension loads the code into the browser and executes it. It also displays a
table with the delivery service URL and hash match status for each auditor. The
threshold required to trust the script (e.g., majority or consensus) can be passed
to the extension along with the URLs of the auditors’ code delivery services.

The extension does not allow the website to recover gracefully if the number
of hashes that match the code’s hash does not meet the threshold. Instead, the
extension shows an error message resembling what a user sees when visiting a
website with an invalid SSL certificate. Users who do not install the extension can
use the application URL directly in the browser to load a fully functioning web
page. It is up to the application’s developer to decide whether this is sensible.
One option is to show a warning indicating the risk of not using the extension.

5 Discussion and Future Work

Installing an extension is not ideal and limits widespread adoption. Ideally,
browsers would provide this functionality natively, just as mobile and desktop
OSs encourage or require applications to be signed. Also, if JavaScript code exe-
cution requires multiple auditors and a consensus vote, website updates require
a synchronized effort by all parties involved. This is burdensome for web devel-
opment, as updates can and do occur often. For our system to work smoothly, a
new continuous deployment workflow is needed that seamlessly pushes the web
application to auditors, lets them reach consensus on the new code, publishes
the hashes, and simultaneously updates the server copy. This is not an urgent
problem for our MPC use cases [6], as code updates coincide with deployments
that occur no more than a few times per year. For applications with more fre-
quent updates, the choice can be made to let the extension recover gracefully
from a mismatched hash (letting the user decide whether to use the application).

While our motivation for this work is verified MPC code delivery, the tech-
nique fits any web scenario that requires authenticated code execution. One
example is Coindash: clients lost $7M during the initial coin offering when hack-
ers changed the website’s source code, replacing the wallet address with their
own [16]. This could have been avoided if a solution such as ours was in place.

References

1. Signing Software with Netscape Signing Tool 1.1. https://docs.oracle.com/cd/
E19957-01/816-6169-10/contents.htm, [Accessed: July 13, 2017]

2. Subresource Integrity. https://www.w3.org/TR/SRI/, [Accessed: July 13, 2017]
3. VIFF. http://viff.dk/, [Accessed: June 20, 2017]
4. Arcieri, T.: Whats wrong with in-browser cryptography? https://tonyarcieri.

com/whats-wrong-with-webcrypto, [Accessed: July 11, 2017]
5. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party

computation. In: CCS. pp. 257–266. ACM (2008)
6. Bestavros, A., Lapets, A., Varia, M.: User-centric distributed solutions for privacy-

preserving analytics. Communications of the ACM 60(2), 37–39 (2017)
7. Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: How the estonian tax and cus-

toms board evaluated a tax fraud detection system based on secure multi-party
computation. In: Financial Crypto. pp. 227–234. Springer (2015)

8. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T.P.,
Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach,
M.I., Toft, T.: Secure multiparty computation goes live. In: Financial Crypto.
LNCS, vol. 5628, pp. 325–343. Springer (2009)

9. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: Sepia: Privacy-preserving
aggregation of multi-domain network events and statistics. In: Usenix Security
Symposium. Usenix (2010)

10. Ejgenberg, Y., Farbstein, M., Levy, M., Lindell, Y.: SCAPI: The secure computa-
tion application programming interface. Cryptology ePrint Archive 2012/629

11. Gilad-Bachrach, R., Laine, K., Lauter, K., Rindal, P., Rosulek, M.: Secure data
exchange: A marketplace in the cloud. Tech. rep. (June 2016)

12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Proc. of the 19th
Annual ACM Symposium on Theory of Computing. pp. 218–229. ACM (1987)

13. Jarrous, A., Pinkas, B.: Canon-mpc, a system for casual non-interactive secure
multi-party computation using native client. In: Proc. of the 12th ACM Workshop
on Privacy in the Electronic Society. pp. 155–166. ACM (2013)

14. Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure mpc
with dishonest majority. In: Proc. of the 2013 ACM SIGSAC Conf. on Computer
& Communications Security. pp. 549–560. ACM (2013)

15. Lapets, A., Varia, M., Bestavros, A., Jansen, F.: Role-based ecosystem model for
design, development, and deployment of secure multi-party data analytics appli-
cations. Cryptology ePrint Archive (2017)

16. Levy, A.: Fraudsters just stole $7M by hacking a cryptocoin offering. https://www.
cnbc.com/2017/07/17/coindash-website-hacked-7-million-stolen-in-ico.

html, [Accessed: August 24, 2017]
17. Morton, B.: Code Signing. https://casecurity.org/wp-content/uploads/2013/

10/CASC-Code-Signing.pdf, [Accessed: July 13, 2017]
18. Ptacek, T.: Javascript Cryptography Considered Harmful. https : / / www .

nccgroup . trust / us / about-us / newsroom-and-events / blog / 2011 / august /

javascript-cryptography-considered-harmful/, [Accessed: July 11, 2017]
19. Shamir, A.: How to share a secret. Comm. of the ACM 22(11), 612–613 (1979)
20. Yao, A.C.: Protocols for secure computations. In: Proc. of the 23rd Annual Sympo-

sium on Foundations of Computer Science. pp. 160–164. IEEE Comp. Soc. (1982)

