
Scather: Programming with Multi-party Computation and
MapReduce

Nikolaj Volgushev Andrei Lapets Azer Bestavros

CS Dept., Boston University
111 Cummington Mall

Boston, MA USA 02215
{nikolaj, lapets, best}@bu.edu

Abstract

We present a prototype of a distributed computational infrastructure, an associated high-
level programming language, and an underlying formal framework that allow multiple parties
to leverage their own cloud-based computational resources (capable of supporting MapReduce
[27] operations) in concert with multi-party computation (MPC) to execute statistical analysis
algorithms that have privacy-preserving properties. Our architecture allows a data analyst
unfamiliar with MPC to: (1) author an analysis algorithm that is agnostic with regard to data
privacy policies, (2) to use an automated process to derive algorithm implementation variants
that have different privacy and performance properties, and (3) to compile those implementation
variants so that they can be deployed on an infrastructures that allows computations to take
place locally within each participant’s MapReduce cluster as well as across all the participants’
clusters using an MPC protocol. We describe implementation details of the architecture, discuss
and demonstrate how the formal framework enables the exploration of tradeoffs between the
efficiency and privacy properties of an analysis algorithm, and present two example applications
that illustrate how such an infrastructure can be utilized in practice.

1 Introduction
Cloud computing allows multiple institutions, organizations, or agencies to collocate their virtual-
ized resources and data assets, and this in turn enables scalable analytics on such collocated data
assets. Two attributes of cloud computing make this possible: (1) the ability to harness significant
computational capacities through scalable platforms such as Hadoop [49] and Spark [52] to perform
complex computations on the data in situ, effectively moving the computation to the data, thus
mitigating the risks associated with distributing copies of private data sets, and (2) the opportunity
to collocate large data sets owned by multiple organizations on the single physical infrastructure
of the cloud provider, thus eliminating the prohibitive costs of moving such data over the network
across private infrastructures.

Novel applications and services that leverage very large data sets from a variety of sources can
be extremely valuable in a number of settings, with significant payoff to society; these range from
scientific discovery [4] to smart-cities [5] and from genomics [3] to homeland and cyber security [23].
Two specific examples that we have targeted in our work are the use of payroll data from multiple
institutions to shed light on pay inequities [15, 36, 40] and the use of corporate network data to
identify global advanced persistent threats [10].

1

A major hurdle in truly unleashing the potential of big-data analytics is the justified concern
related to proprietary data sets: it is necessary to trust the entity performing computation over
the collocated data assets, whether such entity is any one of the data owners or contributors, a
third party such as the public cloud provider, or another external entity interested in the result.
Thus, while feasible in a collocated setting, the development of a number of big-data applications
of tremendous benefit to individual organizations and/or to society at large remains elusive.

1.1 Secure Multi-Party Computation

To facilitate the development of applications that leverage private and possibly highly-sensitive
data assets from multiple organizations or agencies, there is a need to extend popular, scalable data
analytics platforms to allow for computation to be done without requiring constituent organizations
or agencies to share or release their data assets in a way that renders them visible to other entities.
Towards that goal, secure Multi-Party Computation (MPC) is a promising approach that allows a
group of organizations (or parties) to jointly perform a desirable computation without having to
release any of the privately held data assets on which the computation is being performed. More
specifically, secure MPC allows a set of parties to jointly compute a desirable function over data
they individually hold (the private inputs) while ensuring that the only information that can be
gleaned by other parties (or third parties) is the result of the function evaluation and not the private
inputs to this function (unless such function leaks these inputs).

Secure MPC has been an active area of cryptography research for over 30 years [48, 51]. Despite
significant recent advances [13, 19, 39, 41, 43] in improving the computational efficiency of MPC
for computing specific functions and algorithms, as well as in making MPC more accessible by
developing libraries and APIs, the impact of MPC remains fairly limited to proof-of-concept studies.
This is due to four key challenges. First, the learning curve for using available MPC building
blocks is significant, making MPC inaccessible to typical programmers and data analysts. Second,
using MPC requires programmers to develop the algorithms they need to deploy from scratch,
thus discarding the huge body of existing, time-tested analytics available for popular programming
paradigms. Third, existing MPC engines developed to support general purpose computing are
standalone solutions; they are not designed to readily leverage scalable cloud platforms in the
manner of cloud programming abstractions such as MapReduce [27]. Finally, and perhaps most
importantly, for most organizations, the programming/engineering expertise needed to develop
scalable analytics (the purview of data analysts) is distinct from the administrative/management
expertise needed to assess the privacy implications of using MPC on sensitive data sets (the purview
of information security experts and the responsibility of the data contributors themselves). Any
realistic solution that aims to leverage MPC for big-data analytics must separate these two concerns
and maintain their independence (from the perspectives of these distinct classes of users).

1.2 Integration of Secure MPC into the MapReduce Paradigm

We approach the problem of addressing the accessibility of MPC from a different perspective: that of
practical software development in a cloud setting. Rather than focusing on efficient implementations
of MPC primitives or functionalities in isolation from prevalent software development platforms, we
focus on integrating MPC into the programming paradigm of one of the most popular cloud software
development platforms. More specifically, we propose a distributed computational infrastructure
and associated high-level programming language that are an extension of MapReduce,1 arguably the

1The MapReduce programming paradigm [27] facilitates processing of large data sets using elastic (virtualized)
clusters managed using Hadoop [49] and Apache Spark [52] systems.

2

most popular cloud-based analytics programming paradigm; our extension introduces programming
language constructs that make it possible to leverage MPC in analysis algorithms that access
data assets (and, in general, virtualized cloud resources and computational capacity capable of
supporting MapReduce operations) that are spread out across (and are under the strict control
of) multiple organizations. These new programmaing language constructs make it possible to
specify what part of the overall MapReduce computation will need to take place locally within a
participating party’s MapReduce cluster, across all participants using an MPC protocol, or across
all participants with no security guarantees.

Our approach to integrating MPC and MapReduce platforms is informed by (and supports) an
important observation: decisions related to constraints on data sharing across institutional bound-
aries may be orthogonal to the analysis algorithms that need to be computed on that data. Indeed,
these constraints may not even be known to the developers of these analysis algorithms. Thus,
while the framework we present in this report does allow expert programmers to add MPC con-
structs to an existing MapReduce algorithm implementation (i.e., an implementation developed
without explicit specification of what part of the overall computation will need to take place locally
within each participant’s MapReduce cluster, or across all the participants using an MPC proto-
col), it is also designed to allow this process to be automated as a compile-time transformation
that can produce secure variants of the implementation coupled with their corresponding security
guarantees.2

Another differentiating characteristic of our approach is the creation of a single, uniform lan-
guage based on MapReduce constructs that compiles into MPC and/or MapReduce operations.
Such a language is amenable to static analysis and transformation techniques that can infer (and
expose) important tradeoffs between the performance and privacy properties of resulting MPC
protocol implementation variants. This furnishes expert programmers with the ability to compare
and contrast different design decisions – e.g., the implications of doing various Map and Reduce
operations in various orders, or of using different key-value pairs, and so on3

1.3 A Formal Framework for Privacy-Performance Tradeoffs

Supporting the execution of statistical analysis algorithms on large collections of data in a dis-
tributed setting can be expensive; executing those operations using MPC at that scale can be even
more so [14]. While it is possible to work towards improving the performance of distributed com-
puting and MPC primitives and algorithms, an alternative (and complementary) approach is to
build an infrastructure and language that expose tradeoffs between the performance (and cost) of
the computation needed to execute a particular analysis algorithm and the degree (granularity) of
privacy afforded to the data inputs used by the computation. Such an approach can help entities
contributing data to quantify the importance of data privacy by tying it to the performance costs
of analytics implementations, and it can provide data analysts with flexibilities in accommodating
privacy requirements by trading performance for privacy (or vice versa).

For the purposes of this work, we primarily (but not exclusively) consider analysis algorithms
with up to three distinct stages: (1) a local computation stage in which the same algorithm portion
is executed by each contributing party on its own data, (2) an MPC computation stage in which the

2In a real-life deployment scenario, participating parties can then agree on an implementation variant with security
guarantees that satisfy their own policies; automating the process of policy reconciliation is an intriguing possibility
that we hope to explore in future work.

3While this is beyond the scope of this report, assisting programmers with questions related to security and/or
correctness of MPC protocols is a separate and important concern that can be addressed with greater formal rigor
when working with a uniform language such as the one proposed.

3

local

computation begins

MPC

global

computation ends

mixed regime: local, MPC, global

later start of MPC stage, longer local stage:
lower cost, but lower semantic accuracy

data is scattered

data is gathered

earlier start of MPC stage, shorter local stage:
higher semantic accuracy, but higher cost

later end of MPC stage, shorter global stage:
more privacy, but higher cost

earlier end of MPC stage, longer global stage:
lower cost, but less privacy

boundary cases

MPC global

Figure 1: For each data flow in a computation, the points of the transitions from local to MPC compu-
tation and from MPC computation to (public) global computation affect cost, accuracy, and

privacy.

parties share data securely and collectively perform computations on that data, and (3) a global
stage in which computations are computed collectively on distributed data without any guarantee
of privacy. This sequence is partly inspired by the stages of a classic MapReduce computation;
however, it is possible to conceive of analytics algorithms that switch back and forth between these
three stages over the course of their operation. Since MPC protocols may preserve their security
guarantees when composed in parallel or sequentially [21], this possibility is worth investigating in
future work. Note that in a distributed setting, it is not necessarily the case that all parties (or even
all data flows) traverse the three stages in a synchronized way. The most likely synchronization
point is the start of the MPC computation, but this is likely to depend on the particular architecture
of the platform (and potentially on the policies associated with individual input data sets).

It is possible that for each data flow in an algorithm, the boundaries between each stage can be
moved to a point earlier or later in the computation of that data flow (dependency points between
data flows necessarily create restrictions on this movement). Movement of the boundary between
the local stage and the MPC stage represents a tradeoff between accuracy and performance: on
the one hand (a) local computations have no communication overhead, so delaying the transition
to the MPC stage as much as possible improves performance and reduces communication costs; on
the other hand (b) it may be possible to compromise the accuracy of a computation by delaying the
transition even further, e.g., a portion of the computation will simply not incorporate data from
other parties, up to some acceptable threshold of divergence in the result. It is also possible that
there is some limited tradeoff with regard to privacy, in that the transition to the MPC stage may
share some information (for example, the keys in a local key-value store may become public, even
if the values remain private).

Movement of the boundary between the MPC computation and the global computation repre-
sents a tradeoff between privacy and performance: (a) making the transition to the global computa-
tion stage earlier allows the utilization of the distributed computing infrastructure to its full extent,
improving performance and reducing costs; (b) delaying the transition to the global computation
stage extends the duration of the computation during which data remains private thanks to the
guarantees of the MPC protocol being employed. Figure 1 illustrates these stages and boundaries.
It also illustrates two possible extremes: if the data over which the analytics algorithm is defined is

4

shared immediately with all parties, it becomes a simple MapReduce computation. Alternatively,
the entire computation could be an instance of MPC. Note that the only situation in which it would
be possible for the entire computation to be a local computation is when there is one party (in
which case it would be equivalent to a computation that takes place entirely in the global stage).

Many optimization opportunities exist under these conditions. Depending on the mixture of
computational resources provided by the participating parties, the mixture of policies associated
with the input data, and the particular details of an algorithm, it may be possible to split the
work performed by the algorithm under each required regime among groups of participatants in
intelligent ways; a methodical exploration of these possibilities can be supported with the creation
of an appropriate formal framework and collection of language constructs such as those described
in Section 4.

1.4 Organization

The remainder of this report is organized as follows. Section 2 summarizes work related to the
framework, language, and infrastructure described in this report. Section 3 describes the architec-
ture and implementation of our integrated backend component. Section 4 defines the high-level
programming language and associated formal framework. Section 5 provides two examples illus-
trating how the overall system can be used, and Section 6 concludes with a summary of our ongoing
and future work.

2 Related Work
Work related to the efforts described in this report can be broken down into two categories: (1)
research dealing with programming languages and paradigms (and more specifically with cloud
programming paradigms and scalable cloud platforms such as MapReduce/Hadoop), and (2) re-
search dealing with MPC protocols (their accessibility to programmers, their application, and their
practical performance).

With regard to (1), we are in part interested in creating a formal framework for exploring perfor-
mance tradeoffs that can arise when defining protocols that utilize cloud programming paradigms.
Existing work on the automated static analysis of programs to determine their performance char-
acteristics is currently limited, though some efforts aiming to accomplish this for general program-
ming languages [29, 30, 31] and domain-specific programming languages [37] are under way. The
MapReduce programming paradigm is more amenable to such an analysis (compared to a general-
purpose programming language) because of its proximity to algebraic and functional programming
paradigms, and because many interesting analytics can be constructed with a fairly basic subset of
the features it makes available to programmers [33, 46, 47].

While there is a great deal of literature on the broader topics of programming languages and
cloud programming paradigms, in this work we are specifically concerned with bringing the prowess
of MPC to bear in practical settings; thus, it is most relevant to consider (2) in greater detail.

Prominent theoretical approaches to MPC4 are linear secret sharing [48] and garbled circuits
[51]. Recent efforts aimed at making these approaches accessible to programmers include publicly-
available implementations based on linear secret sharing [13, 19, 25, 38] and on garbled circuits [32,
35, 41, 42, 43, 44]. In contrast to our proposed work, these efforts cater to standalone applications
in which MPC is implemented in isolation, i.e., without integration into a scalable data processing

4For a thorough overview of recent advances in MPC, we refer the reader to the excellent survey by Archer et al.
[14].

5

platform and without leveraging existing code bases for large-scale analytics. Also, these standalone
solutions (libraries and APIs) presume a significant level of understanding of MPC, which is beyond
the reach of typical programmers and data analysts. We brielfy overview some of these efforts below.

Viff [13] was the first MPC framework to be deployed in production. Viff implements an
asynchronous protocol for general MPC over arithmetic circuits, based on linear secret sharing,
and provides runtimes for dishonest minority as well as active adversaries. The framework is
implemented in Python using the Twisted web framework for asynchronous participant communi-
cation. Sharemind [19], another linear secret sharing scheme, implements a custom secret sharing
scheme and share computing protocols over arithmetic circuits. Sharemind is restricted to three
participants, a passive adversary and requires an honest majority. Sharemind provides a custom,
C-like programming language for implementing MPC tasks and has been deployed to implement
production-level applications, e.g., for financial data analysis [18, 20]. Both Viff and Sharemind
are candidate backend frameworks for our language and infrastructure.

A number of recent efforts share our ambition of making MPC more accessible. ObliVM [41]
provides a domain-specific language (DSL) for compiling high-level abstractions such as MapReduce
operations to oblivious representations. ObliVM implements a garbled circuit backend (but allows
for the addition of ther MPC protocols) and supports secure two-party computation. GraphSC [43]
extends ObliVM with an API for graph-based algorithms and adds parallelization to the evaluation
of the resulting oblivious algorithms. Wysteria [44] provides a DSL which is compiled to a garbled-
circuit based MPC encoding. Wysteria allows programmers to explicitly identify segments of code
which are to be performed by the parties locally, and segments which require MPC rounds. Both
ObliVM and Wysteria offer formal security using type systems. There is follow-up work on using
static analysis to infer and improve the performance of MPC protocols [33, 45, 46] along with
work on automatic MPC protocol selection and mixed protocol compilation [34, 47]. While these
efforts share our ambition of making MPC more accessible, they do not consider MPC as part
of a larger, scalable data processing platform, but rather they focus on domain specific uses of
MPC. Furthermore, they do not provide the desirable separation of (and opportunity for exposing
tradeoffs between) privacy and performance concerns. That said, many of these advances could be
leveraged in support of the back-end of our proposed infrastructure.

Other efforts aiming to reduce the overhead of MPC have focused on the prohibitive costs of
message exchanges (e.g., by restricting communication to subgroups of participants during protocol
execution [26, 53]). These efforts are orthogonal to our proposed work as they focus on improving
the performance of standalone (or backend) MPC systems.

3 Infrastructure Integrating MapReduce and MPC
Our infrastructure targets a scenario (e.g., a federated cloud [9]) in which multiple parties, each
having their own computational infrastructure capable of performing MapReduce operations, wish
to execute a single protocol that may involve both local computations (using MapReduce) and
computations across all the parties (using either MapReduce or, more interestingly, an MPC proto-
col). In particular, each party is equipped with computational resources to (a) execute MapReduce
tasks within a private MapReduce cluster, (b) engage with the other participants in the execution
of MPC protocols, and (c) coordinate task execution. While our prototype infrastructure utilizes
specific implementations of MapReduce and MPC (Apache Spark [52] and Viff [13]), there is no
reason that different implementations of each cannot be used in such an infrastructure (and, in fact,
it may be desirable to use multiple implementations, as each may have its own unique properties
and performance characteristics).

6

Any of the participating parties (or an external third party interested in some analysis result)
can implement their desired analysis algorithm in our high-level programming language (defined in
Section 4). The algorithm definition is compiled into a job specification consisting of MapReduce
tasks to be executed by each party locally, MPC tasks to be executed across multiple parties,
and a schedule determining the task execution order. Our prototype implementation provides an
execution environment for such job specifications.

We describe our prototype implementation by giving a brief overview of the design and providing
concrete implementation details. We also describe a deployment scenario for our prototype and
detail how an analysis algorithm implemented in our high-level language is compiled and executed
on the deployed infrastructure.

3.1 Implementation Details

Consistent with the architecture of scalable distributed systems (such as Hadoop and Spark), our
prototype infrastructure is comprised of two types of components: controller nodes, and worker
nodes. Each party participating in a protocol execution contributes and controls a worker node
(that is therefore trusted by that party). A worker node accesses a party’s private data, acts as
a driver for local MapReduce tasks, and participates in MPC tasks across parties. A controller
node oversees the execution of the job. It distributes the appropriate tasks to each worker node,
enforces a synchronized execution of these tasks (which is critical for MPC tasks that require the
simultaneous collaboration of multiple worker nodes), and provides a storage medium that can be
used to share public data across worker nodes.

The controller and worker node software is implemented using Python; this software is available
as an Amazon Machine Image (AMI) on Amazon Web Services (AWS). The controller node net-
work interface is a web server implemented in the Python Twisted web framework [11] and serves
content over HTTP (we plan to update the controller to serve HTTPS content in the future). All
communications between controller and worker nodes are accomplished by sending JSON messages
over HTTP (in future versions of the infrastructure, communications will take place over HTTPS).
The job specification and all other configuration objects are JSON encodings of Python classes.

Each worker node is equipped with a MapReduce component, an MPC component, an interface
to access private storage, and a network interface for communicating with the controller node. The
network interface is implemented as a simple web client. The MapReduce component provides an
interface for connecting to an Apache Spark cluster and submitting tasks specified in PySpark,
Spark’s Python API [6]. The MPC component configures a worker node to participate in the
Viff [13] MPC protocol with the other worker nodes, and provides an interface for running MPC
tasks specified in Viff. The MapReduce and MPC components act as integration points between our
infrastructure and specific MapReduce and MPC implementations. We have defined a general API
for both components with the goal of extending support to other MapReduce and MPC backends
in the future.

We chose Viff as our backend MPC framework because it implements classical secret sharing
schemes and provides an intuitive, lightweight Python API for specifying MPC tasks. Viff’s API
allowed us to rapidly explore and prototype various designs for our infrastructure and simplified
integration. Further, Viff’s use of classical secret sharing schemes makes it representative of other
MPC frameworks. This aided us in designing an extensible API for the MPC component. Choosing
Spark allowed us to explore integration with a state-of-the-art MapReduce platform.

We now concretize the above details by giving an example deployment scenario for our infras-
tructure.

7

3.2 Deployment Example

Broker

Controller

S3 Storage

S3 Storage

Worker

Bob

S3 Storage

Worker

Charlie

S3 Storage

Worker

Alice

VIFF MPC Protocol

Program

Compiler

Target
Framework

Spec.
Apache Spark,

Viff

Job Specification
MR-task
pyspark

MPC-task
Viff

Task schedule

Figure 2: Prototype deployment scenario in a service brokerage setting (left) and compilation workflow
of a high-level analysis algorithm definition (right).

Figure 2 (left) illustrates an example prototype deployment. In this scenario, three parties with
existing Apache Spark infrastructures and available AWS EC2 resources wish to run a computation
consisting of local MapReduce operations and operations ranging across parties while preserving
the privacy of their data. We provide two concrete examples of applications that conform to
this scenario in Section 5. The three parties designate a service broker as an impartial party to
administer the overall execution of the computation.

The service broker launches a controller node with access to an AWS S3 storage instance to serve
as shared storage to all parties. Each participating party launches a worker node and configures it
with access to a private S3 storage instance, the master node of an Apache Spark cluster, and the
network address of the controller node.5

Upon completing the above preconfiguration steps, each worker node automatically registers
with the controller node and obtains a global MPC configuration specifying the network and security
parameters of all other participating worker nodes.

3.3 Compilation of Analysis Algorithms

Analysis algorithms specified in the high-level programming language described in Section 4 can
be compiled and executed on a configured infrastructure. Given a high-level algorithm definition
and a specification of the target backend frameworks, the compiler produces a job specification
consisting of a collection of tasks and a task schedule. The tasks consist of an encoding of the
required MapReduce operations as well as input and output handlers. The encoding is specific to
the target backend framework.

Figure 2 (right) illustrates an example compilation scenario in which the target frameworks of
the compilation are Apache Spark and Viff. The analysis algorithm compiles to two tasks that are
to execute consecutively, starting with the MapReduce task. The MapReduce task is encoded as
a Python module implementing the required MapReduce, input, and output operations in Spark’s
PySpark API. Similarly the MPC task is encoded as a Python module implementing the required
operations in Viff.

5Note that these preconfiguration steps can be fully automated given the participating parties’ AWS credentials,
the network addresses of each Spark cluster, the S3 storage instances, and the controller node.

8

A job specification produced by the compiler can be executed on a configured infrastructure
such as the one described in Section 3.2. We give some concrete examples of high-level analysis
algorithms and the resulting task-level encodings in Section 5.

3.4 Execution of Job Specifications

Each worker node obtains the job specification from the controller. Note that all worker nodes
receive the same job specification, (i.e., all worker nodes receive the same tasks and task schedule).

Worker nodes execute tasks in the order specified by the task schedule. The task schedule
can include branching decisions driven by the results of previous tasks. All branching decisions
are evaluated by worker nodes locally. In our current implementation, we restrict branching to be
based only on data that is available and identical across all worker nodes (e.g., the result of an
MPC task). Since each MPC task requires the participation of all worker nodes, diverging control
flow could lead to a deadlock of the system if different worker nodes attempt to execute different
MPC tasks.

Before evaluating the next local MapReduce or MPC task, each worker node registers with
the controller node and delays task execution until all other worker nodes have registered. This
synchronization barrier ensures the availability of all worker nodes for MPC tasks.

The evaluation of a local MapReduce task consists of reading data from the appropriate private
and/or shared key-value stores, performing the specified MapReduce operations on them, and
updating the appropriate key-value stores with the result. These operations are specified in the
native language of the MapReduce backend (i.e., in Python, using the PySpark API in the case of
Apache Spark).

The evaluation of an MPC task follows the same general structure of reading, processing, and
writing key-value store data. Before data can be processed, however, it must be distributed across
all parties in a privacy-preserving format. Viff (as well as many other MPC frameworks) achieves
this via secret sharing. As part of the integration of Viff into our infrastructure, we implemented
methods for distributing key-value stores by broadcasting the keys (we assume keys to be public) and
secret sharing the corresponding values across the participating parties. The data processing steps
are expressed as Map and Reduce operations; this requires support for such operations from the
MPC backend. In the case of Viff, which is implemented in Python and uses operator overloading
to implement arithmetic operations over secret shared values, we were able to use Python’s built-in
functions directly.

At the end of an MPC task execution, the results that are in the form of secret shares must be
opened and revealed to the appropriate parties. This can be specified within an analysis algorithm
implementation using the gather construct, defined in Section 4.1. Each party broadcasts the
keys of the secret shared result values it requires. All parties holding a share of the value must
participate for the share to be successfully reassembled; this prevents a single party from acquiring
results without all other parties’ consent.

Once all tasks in the task schedule have finished executing, the final result is reported to the
target specified in the algorithm implementation. This could be the controller node, the worker
nodes, or a specific subset of worker nodes, depending on the specific application.

4 High-Level Language and Formal Framework
We present a high-level programming language called Scather (in reference to its two built-in con-
structs scatter and gather, defined in Section 4.1), along with a proof-of-concept formal framework
underlying our proposed infrastructure integrating MapReduce and MPC. A formal framework is

9

an implementation-independent specification of the requirements that govern the infrastructure’s
behavior, the semantics of its interfaces, and the mathematical and logical properties that can
be derived from these. More importantly, the framework enables the rigorous definition of for-
mal systems that can be the basis for transformations and optimizations of analysis algorithm
implementations represented using the language.

4.1 High-level Language for Analysis Algorithm Implementations

Table 1 lists the syntax of our high-level programming language for defining analysis algorithms,
where V is the space of all variables, L is the space of all string literals, and T is space of all type
names. To illustrate the essential concepts of the framework while minimizing the complexity of
the exposition, we introduce a restricted subset of the language.

An algorithm defined using the language consists of a sequence of statements (each of which
is either a variable assignment or one of a few very basic constructs for branching, looping, and
named procedures). The statements could be viewed as stages within the overall computation that
calculates some desired analytic. We use the term hybrid implementation or implementation to
refer to a realization of an analysis algorithm that uses a combination of MapReduce-style and
MPC-style computations to produce an analysis result subject to particular privacy constraints.

Expressions in the language are built up using operators that closely resemble those supported by
the MapReduce paradigm, as well as a few new operators that bridge the gap between a MapReduce
computation and an MPC computation. A key-value store is a collection of tuples of the form (k, v)
where k must be a key (i.e., a value of a primitive type such as an integer or string) and v can
be any value (including, potentially, another nested tuple). Each data expression describes a key-
value store in a particular state.6 In particular, each store represents an initial key-value store,
while every other expression represents an intermediate store that exists at some point during the
execution of the program. It is assumed that every participant running the protocol has a local
key-value store corresponding to each declarations of the form x := store(τ , τ) (naturally, different
participants may have different keys and values within each of these). Each simple expression or
expression describes a key or value.

• The mapkey and mapval operations take a function and key-value store, and modify every
key (given only the key) or every value (given both key and value), respectively, in the key-
value store. They are overloaded to also accept a simple expression as the first argument, in
which case every key or value in the key-value store specified by the second argument is simply
substituted with that simple expression. These restricted variants of map are introduced to
support policy derivation inference rules such as those presented in Section 4.2, which cannot
always be applied when the more general map construct is used.

• The reduce operation is shorthand for reduce-by-key.

• The language is somewhat domain-specific with regard to built-in arithmetic operators, as
they are intended to support statistical analyses over (collocated) data sets. Arithmetic oper-
ators such as sum and max can refer to binary operators that accept two integer arguments,
to curried operators that take one argument and return a function on integers (e.g., sum(1)
is a function that increments its argument by 1), and to aggregate operators that can be
applied using reduce.

6This key-value store instance could be local to a participant or globally available to all participants. How data
available to all is actually distributed and where it is stored is up to the specific compiler and backend implementation.

10

• The scatter and gather operations shift the data through the possible operating regimes
(the scatter operation shifts data from a local to an MPC regime, while the gather oper-
ation shifts it from an MPC regime to the globally visible regime).7 For any expression δ
that corresponds to data available only to an individual participant, evaluating scatter(δ)
involves taking the result of evaluating δ and turning it into an MPC share. Any subse-
quent operations applied to this data should be interpreted as operations on shares within
the underlying MPC infrastructure. Assuming that δ represents data that is currently being
shared, evaluating gather(δ) involves reassembling the shares and returning a result to
every participant that evaluates this expression. These operations can be inserted manually
by an expert programmer or automatically at different points of the program (e.g., by the
inference rules in Section 4.2).

• Because we assume that keys are never private in our underlying MPC infrastructure, it is
possible for individuals to perform filter operations using sets of keys from their own local
key-value stores (which they can obtain using keys(. . .)).

user type α ∈ T
type τ ::= int | bool | str | α

integer n ∈ Z
string literal ` ∈ L

constant c ::= true | false | n | `

variable x ∈ V
pattern p ::= x | (p1 , . . . , pn)

function ϕ ::= sum | minus | prod
| sum(n) | prod(n)
| max | min
| and | or | not
...
| lambda p: e

expression e ::= x
| c
| (e1 , e2)
| ϕ (e1 , e2)

keys k ::= n | σ | keys(δ)
data expression δ ::= x

| filter(k , δ)
| mapkey(ϕ , δ)
| mapval(ϕ , δ)
| map(ϕ , δ)
| reduce(ϕ , δ)
| union(δ1 , δ2)
| update(δ1 , δ2)
| join(δ1 , δ2)
| scatter(δ)
| gather(δ)

statement s ::= type α = τ
| x := store(τ1 , τ2)
| x := δ
...
| repeat n: s1 . . . sn

program p ::= s p
| return δ

Table 1: Abstract syntax for a subset of the high-level programming language for analysis algorithms.

We stipulate that the true (i.e., desired) execution and evaluation semantics of any given analysis
algorithm implementation described using the syntax in Table 1 is determined by what would
occur if the program were executed on data that is globally visible on a MapReduce infrastructure
operated by a single party. For example, the semantics of any implementation derived using the

7Those familiar with MPC protocols will appreciate that scatter corresponds to the process via which encrypted
shares of the private inputs are “scattered” to various parties executing the MPC protocol, whereas gather corresponds
to the process via which shares representing the output of the MPC computation are “gathered” to yield the results.

11

process described in Section 4.2 should match the semantics of the policy-agnostic version of the
algorithm in which the scatter and gather operations are absent. We call this the global semantics.

In fact, algorithm implementations written using the language can be agnostic to the prove-
nance, location, ownership, and security policies of the data on which they operate; it is only neces-
sary to avoid employing any instances of the scatter and gather operators in the implementation.
This conforms with the abstraction provided by MapReduce [27] (in which the physical distribution
of data is abstracted away from the programmer) and can be made compatible with the concept
of policy-agnostic programming [50] (in which security and privacy properties are abstracted away
from the programmer and specified independently).

4.2 Exploring Tradeoffs through Derivation of Hybrid Implementations

One benefit of having a single high-level language as a front-end for the infrastructure integrating
MapReduce and MPC is that it is possible to define static analysis algorithms over protocols that
can furnish the programmer with valuable information about the possible tradeoffs the protocol
implementation admits between privacy and performance before it is ever deployed and executed.
This is particularly valuable in a distributed setting, as simulation or dynamic testing may be
expensive or infeasible.

One consequence of employing MPC is that there is overhead both in terms of the number of
operations that each participant must perform, and in terms of the quantity of messages that must
be passed between participants when the protocol is executed. It is possible that a programmer who
wishes to employ MPC may have more flexibility with regard to privacy than with performance,
and would find it useful to consider protocol variants that improve performance at the cost of
reducing privacy by utilizing MPC in a more restricted way.

We assume that participating parties have individual preferences about how they are willing to
share their data. Given an analysis algorithm, the objective is to automatically derive an ensemble
of possible hybrid implementations of the program that span the range of tradeoffs between privacy
and performance. In each implementation in the ensemble, data flows may transition between the
local and MPC regimes (as illustrated in Section 1.3, Figure 1) at different points. This ensemble can
then be used to enumerate possible security policies for the participating parties (e.g., if one or more
parties do not already have a policy, or if their policy is specified using some other representation
or level of detail).

Ident
Ω ` δ ‖ δ

Var
Ω(x) = ω

Ω ` x ‖ ω(x)
Union

Ω ` δ1 ‖ ω(δ′
1) Ω ` δ2 ‖ ω(δ′

2)
Ω ` union(δ1, δ2) ‖ ω(union(δ′

1, δ′
2))

Filter
Ω ` δ ‖ ω(δ′)

Ω ` filter(k, δ) ‖ ω(filter(k, δ′))
MapVal

Ω ` δ ‖ ω(δ′)
Ω `mapval(ϕ, δ) ‖ ω(mapval(ϕ, δ′))

Reduce
Ω ` δ ‖ ω(δ′) ω and ϕ commute

Ω ` reduce(ϕ, δ) ‖ ∗reduce(ϕ, ω(reduce(ϕ, δ′)))

MKR
Ω ` δ ‖ ω(δ′) ω and ϕ commute

Ω ` reduce(ϕ, mapkey(`, δ)) ‖ ∗reduce(ϕ, ω(reduce(ϕ, mapkey(`, δ′))))

Table 2: Selected inference rules for scatter obligation propagation over data expressions. The notation
Ω ` δ ‖ δ′ means that under obligation environment Ω, δ can become δ′; ω represents obligations.

12

Str
Ω; {x 7→ ∗scatter} ` p ‖ q

Ω ` x := store(τ1, τ2); p ‖ x := store(τ1, τ2); q
Rtn

Ω ` δ ‖ ω(δ′)
Ω ` return δ ‖ return ω(δ′)

Assign-Ident
Ω ` δ ‖ δ′ Ω ` p ‖ q

Ω ` x := δ; p ‖ x := δ′; q
Assign-Obl

Ω ` δ ‖ ω(δ′) Ω; {x 7→ ω} ` p ‖ q
Ω ` x := δ; p ‖ x := δ′; q

Table 3: Selected inference rules for scatter obligation propagation over statements.

Tables 2 and 3 list a collection of derivation rules that can be used to recursively transform an
algorithm implementation from one that takes place entirely within an MPC regime into one that
takes place partially within a local regime before switching over to an MPC regime. These rules
can be viewed as a means for determining the points at which the scatter operation can be added
to an algorithm definition. The benefit of performing operations locally, if possible, is improved
performance. A similar set of rules can be assembled for the transition from the MPC regime to
a globally visible regime (where an earlier transition also improves performance at the expense of
privacy). Such rules would be a means for determining the points at which the gather operation
can be added to an implementation.

The inference rules in Tables 2 and 3 work by introducing obligations that force the algorithm
implementation to conform to the global semantics (as defined in Section 4.1). An obligation is
the additional work that must be performed on data in the MPC regime if that data expression is
only executed locally within each participant’s MapReduce infrastructure on only each participant’s
local portion of the data. The “initial” obligation is that any key-value store must be immediately
scattered, so that every subsequent operation takes place within the MPC regime. The inference
rules allow this obligation to gradually be “pushed forward” along each data flow described in
the algorithm, assuming certain conditions are met. As an adopted convention, we denote that
an operation such as reduce(sum, ...) is an obligation with the notation ∗reduce(sum, ...). In
Section 5.1, we illustrate how the inference rules in Tables 2 and 3 can be used to synthesize multiple
variants of an algorithm implementation.

5 Example Applications
We present two example applications inspired by the needs of local organizations who require
privacy-aware solutions to the mission-critical analysis problems they face: (1) pay-equity analytics
over private payroll data from corporate members of of the Boston Women’s Compact 100%-Talent
initiative [1, 7] and (2) situational awareness analytics over private network data from corporate
members of the Mass Insight ACSC threat sharing program [2, 28]. These examples inform the
design and development of our framework and demonstrate how our integrated infrastructure can
be used to implement a protocol that employs both MapReduce and MPC capabilities. In the
remainder of this section, we describe these use cases, elaborating on the first to illustrate some of
the considerations that motivated the design decisions and associated research challenges underlying
our language and infrastructure.

5.1 Computing Aggregate Compensation Statistics

We consider a scenario in which several firms wish to compute compensation statistics broken
down by category across all firms without revealing these statistics for the individual firms. This

13

application exemplifies a real-world use of MPC to tackle important problems with national social
justice implications [8, 12, 15]. In particular, the data analysis being considered could identify wage
gaps between male and female employees, or can identify the employee seniority level for which the
gender wage gap is most extreme.

Implementation Derivation from a Policy-Agnostic Algorithm. Figure 3 shows a simple
version of the analysis algorithm, defined using the language syntax presented in Table 1. This
algorithm computes the aggregate difference in compensation between female and male employees
for a given data store that specifies the gender and salary of each employee.

type gender = str
type salary = int
data := store(gender, salary)

f := mapval(prod(-1), reduce(sum, filter("f", data)))
m := reduce(sum, filter("m", data))
d := mapkey("d", union(f, m))

return reduce(sum, d)

Figure 3: Policy-agnostic implementation of an algorithm for collecting aggregate compensation data.

Figures 4, 5, 6, and 7 illustrate the data flows for the algorithm in Figure 3; the derivation
process defined in Tables 2 and 3 creates (over the course of its operation) a number of hybrid
implementations of the initial algorithm implementation. In the diagrams, we omit the second
data expression argument in the notation for each operation, as it is implied by the directed arrows
representing the data flowing into that operation. Boxed expressions represent operations performed
in the local regime, while un-boxed expressions represent operations performed in the MPC regime.

• In the implementation in Figure 4, the entire algorithm executes within the MPC regime.

• The implementation in Figure 5 shows what occurs after the regime boundary shifts to the first
reduce operation in each flow. This is accomplished using the [Reduce] rule in Table 2 to
split each reduce operation into a local operation reduce(sum)A that only takes place locally
on local data on each participating party’s MapReduce infrastructure, and an obligation
∗reduce(sum)A′ to perform it later in the MPC regime on all the participants’ data after it
has been scattered.

• The shift of the the regime boundary down to the union operation via the [Union] rule in
Table 2 is shown in Figure 6.

• The shift of the boundary down to the last reduce operation via the [MKR] rule in Table 2
is illustrated in Figure 7.

Compilation to Spark and Viff. Figure 8 shows a particular implementation of a variant
of the algorithm in Figure 3. In this implementation, all the work to compute the aggregate
difference in wages is first computed locally, and then the differences are distributed using secret
sharing and aggregated in the MPC regime. Figures 9, and 10 show partial compilation results

14

store(str,int)
∗scatter()

�� ��
filter(“f")

��

filter(“m")
��

reduce(sum)A

��

reduce(sum)A

pp

mapval(prod(-1))

.. union()
��

mapkey(“d")
��

reduce(sum)B

Figure 4: The program is executed entirely in
the MPC regime; the only obligation
is to immediately scatter the initial
store as required by the [Str] rule in

Table 3.

store(str,int)
�� ��

filter(“f")
��

filter(“m")
��

reduce(sum)A

∗scatter()
∗reduce(sum)A′

��

reduce(sum)A

∗scatter()
∗reduce(sum)A′

qq

mapval(prod(-1))

.. union()
��

mapkey(“d")
��

reduce(sum)B

Figure 5: The regime boundary is shifted to the
first reduce operation in each flow,
splitting it into a local operation and
an obligation to perform the opera-

tion again in the MPC regime.

store(str,int)
�� ��

filter(“f")
��

filter(“m")
��

reduce(sum)
��

reduce(sum)

~~

mapval(prod(-1))

union()
∗scatter()

∗reduce(sum)A′

��
mapkey(“d")

��
reduce(sum)B

Figure 6: The boundary is shifted down to the
union operation using the [Union]
rule from Table 2, merging the obli-

gations from the two data flows.

store(str,int)
�� ��

filter(“f")
��

filter(“m")
��

reduce(sum)
��

reduce(sum)

pp

mapval(prod(-1))

.. union()
��

mapkey(“d")
��

reduce(sum)B

∗scatter()
∗reduce(sum)A′

∗reduce(sum)B′

Figure 7: The regime boundary is shifted down
to the last reduce operation via the
[MKR] rule from Table 2. Notice that
the reduce operation is again split.

15

for selected sections of the implementation. The compilation of the high-level protocol definition
produces distinct tasks. A MapReduce task implements Lines 3–7, followed by an MPC task
implementing Line 9. Figure 9 demonstrates a portion of the MapReduce task. Note that a
pattern of the form reduce(sum, union(..., mapval(prod(-1), ...))) could be recognized by
the compiler and transformed into a much simpler expression. A segment of the MPC task is shown
in Figure 10. For brevity, we omit the definitions of the methods construct_entire_kv_store,
establish_ownership, and open_shares_to_owners, which rely on the existing Viff framework
to facilitate secret-sharing values, broadcasting the corresponding keys across all participants, and
gathering and opening shares.

1: type gender = str
2: type salary = int
3: data := store(gender, salary)
4:
5: m := reduce(sum, filter("m", data))
6: f := reduce(sum, filter("f", data))
7: d := reduce(sum, union(m, mapval(prod(-1), f)))
8:
9: s := gather(reduce(sum, scatter(d)))

10: return s

Figure 8: Variant implementation for collecting aggregate compensation data (with explicit MPC stage).

data = sc.textFile(str(in_handle)).map(jsonpickle.decode)

m = data.filter(lambda x: x[0] == ’m’)\
.reduceByKey(lambda x, y: x + y)\
.collect()

f = data.filter(lambda x: x[0] == ’f’)\
.reduceByKey(lambda x, y: x + y)\
.collect()

d = (’d’, m[0][1] - f[0][1])

out_handle.write(d)

Figure 9: Spark encoding of Lines 3–7 in Figure ??.

entire_kv_store = construct_entire_kv_store(viff_runtime, private_kv_store, participants)

d = filter(lambda x: x[0] == ’d’, entire_kv_store)
sum = (’sum’, reduce(lambda x, y: x[1] + y[1], d))
owners = establish_ownership(viff_runtime, sum, participants)
res = open_shares_to_owners(viff_runtime, total_diff, participants, owners)

out_handle.write(res)

Figure 10: Viff encoding of Line 9 in Figure ??.

16

More Sophisticated Algorithm Variants and Privacy-Performance Trade-offs. Fig-
ure 11 shows a more extensive algorithm for computing aggregate compensation data by both
gender and seniority. It is more sophisticated than the algorithms in Figures 8 and 11, but like the
one in Figure 11 it is privacy-agnostic in that it is written as if the payroll data from the various
firms is available in a single data store.

Figure 12 shows a naive implementation variant of the algorithm in Figure 11; this one uses
the scatter primitive to indicate the need to apply MPC to any manipulation of payroll records
in the data store, and uses the gather primitive to indicate the point at which it is safe to reveal
the results. For purposes of illustration, the scatter and gather primitives can be seen as a
syntactic way to scope the MapReduce code that needs to be performed with MPC protection.
As we discussed in Section 4, the scatter and gather primitives could be introduced into the
MapReduce code by an expert programmer or, preferably, by an automated compilation process.

type gender = str
type salary = int
type seniority = int
data := store((gender, seniority), salary)

sals_by_gen_sen := reduce(lambda ((gs1, sal1), (gs2, sal2)): sum(sal1, sal2), data)

male_by_sen := mapkey((lambda (gen, sen): sen), filter("male", sals_by_gen_sen))
female_by_sen := mapkey((lambda (gen, sen): sen), filter("female", sals_by_gen_sen))
neg_female_by_sen := mapval(lambda (sen, sal): -sal, female_by_sen)

combined_by_sen := union(male_by_sen, neg_female_by_sen)
pay_gap_by_sen := reduce(sum, combined_by_sen)
pay_gap_by_sen := mapkey(’*’, mapval(lambda (sen, gap): (sen, gap), pay_gap_by_sen))
max_pay_gap := reduce(lambda (k1, (s1, g1)), (k2, (s2, g2)): max(g1, g2), pay_gap_by_sen)
min_pay_gap := reduce(lambda (k1, (s1, g1)), (k2, (s2, g2)): min(g1, g2), pay_gap_by_sen)

return union(max_pay_gap, min_pay_gap)

Figure 11: Policy-agnostic computation of aggregate salary by gender and seniority.

type gender = str
type salary = int
type seniority = int
data := scatter(store((gender, seniority), salary))

... identical to privacy-agnostic protocol ...

return gather(union(max_pay_gap, min_pay_gap))

Figure 12: Private computation of aggregate salary by gender and seniority.

The protocol in Figure 12 requires that all computations are performed as MPC rounds over
secret-shared data. This incurs a significant degradation in performance [14, 24]. In order to mit-
igate (at least partially) this performance bottleneck, the MapReduce operations of the original
program can be performed locally by each firm, with MPC being employed only when the MapRe-

17

duce operation semantics necessitate aggregation across the results of the local computation. A
compilation reflecting this optimization is presented in Figure 13.

type gender = str
type salary = int
type seniority = int
data := store((gender, seniority), salary)

sals_by_gen_sen := reduce(lambda ((gs1, sal1), (gs2, sal2)): sum(sal1, sal2), data)

male_by_sen := mapkey((lambda (gen, sen): sen), filter("male", sals_by_gen_sen))
female_by_sen := mapkey((lambda (gen, sen): sen), filter("female", sals_by_gen_sen))
neg_female_by_sen := mapval(lambda (sen, sal): -sal, female_by_sen)

combined_by_sen := union(male_by_sen, neg_female_by_sen)
pay_gap_by_sen := reduce(sum, combined_by_sen)
pay_gap_by_sen := reduce(sum, scatter(pay_gap_by_sen))
pay_gap_by_sen := mapkey(’*’, mapval(lambda (sen, gap): (sen, gap), pay_gap_by_sen))
max_pay_gap := reduce(lambda (k1, (s1, g1)), (k2, (s2, g2)): max(g1, g2), pay_gap_by_sen)
min_pay_gap := reduce(lambda (k1, (s1, g1)), (k2, (s2, g2)): min(g1, g2), pay_gap_by_sen)

return gather(union(max_pay_gap, min_pay_gap))

Figure 13: Optimized privacy-preserving computation of aggregate salary by gender and seniority.

Despite the improved performance of the above approach, the cost of MPC often remains
prohibitive when working over large data sets. Even in state-of-the-art implementations [19, 25],
certain operations, such as value comparison, require O(n2) messages to be passed between parties,
where n is the number of participants (which can be over 50 in real-world deployments [36]).
Performing a reduce by max operation on a large key-value store thus proves infeasible in MPC. In
certain cases, however, it may be possible to move costly operations such as max out of the MPC
scope by relaxing the privacy constraints on the data.

...

combined_by_sen := union(male_by_sen, neg_female_by_sen)
pay_gap_by_sen := reduce(sum, combined_by_sen)
pay_gap_by_sen := reduce(sum, scatter(pay_gap_by_sen))
pay_gap_by_sen := mapkey(’*’, mapval(lambda (sen, gap): (sen, gap), pay_gap_by_sen))
pay_gap_by_sen := gather(pay_gap_by_sen)
max_pay_gap := reduce(lambda (k1, (s1, g1)), (k2, (s2, g2)): max(g1, g2), pay_gap_by_sen)
min_pay_gap := reduce(lambda (k1, (s1, g1)), (k2, (s2, g2)): min(g1, g2), pay_gap_by_sen)

return union(max_pay_gap, min_pay_gap)

Figure 14: Performance-aware privacy-preserving computation of aggregate salary by gender and senior-
ity.

Consider, for example, the alternative compilation shown in Figure 14. The placement of
the gather operation before computing max_pay_gap and min_pay_gap allows for the subsequent
reduce operations to be carried out by the firms’ local MapReduce infrastructures. This brings

18

significant performance gains but requires that the underlying key-value store be made public. In
this particular scenario, pay_gap_by_sen contains data already aggregated via a reduce operation
and only reveals the combined pay gaps across seniority levels as opposed to individual firm pay
gaps. While it may be in the data analyst’s interest to choose the more performant protocol in
Figure 14, the firms’ data privacy is better protected in the slower protocol in Figure 13. In
Section 6.2, we discuss our plans for future work on constructing theoretical and practical tools
that can help data contributors and analysts collectively negotiate such trade-offs.

5.2 Collaborative Threat Analysis: Computing Hop Counts to Compromised
Nodes

Figure 15: Network with compromised nodes for an instance of the hop count computation use case.

Our second use case concerns the collective analysis of operational data from private networks for
situational awareness purposes (e.g., the risk analysis of inter- and intra-network threat propagation
[22]). In particular, consider a scenario in which interconnected members of a coalition/consortium
of firms [2] (e.g., various banks that each have their own private network) are interested in comput-
ing the distance from each of their local network nodes to the closest “potentially compromised”
nodes (e.g., running a yet-to-patch kernel). A compromised node may be within the perimeter of
another firm. While each firm has an incentive to compute such a risk profile, none of the firms
would agree to reveal the “health” of their internal nodes or the “topology” of their internal net-
works. Here, each party holds private data describing its local network topology, along with metrics
about the health of the individual nodes therein. The public interconnection topology (connections
between firms through boundary nodes) is known to all participants. As with the compensation
statistics use case in Section 5.1, the analysis algorithm to compute the shortest distance (e.g.,

19

hopcount) to a potentially compromised node is straightforward if all the data is available in a
single data store. By selectively introducing MPC constructs into the analysis algorithm, one can
generate various instances of the analysis algorithm implementation, each exposing private data to
a different extent.

type node = int
type dist = int

pub_graph := store(node, node)
pub_dst := store(node, dist)
bdr_graph := store(node, node)
graph := union(pub_graph, bdr_graph)

cmp_graph := store(node, node)
cmp_dst := store(node, dst)
bdr_dst := store(node, dst)
dst := union(cmp_dst, bdr_dst)

Begin local computation.
repeat 100:

nbr_dst := mapval(lambda (v,u): (v,u+1), join(map(lambda x,y: (y,x), cmp_graph), dst))
dst := reduce(min, union(dst, nbr_dst))

cmp_dst := update(cmp_dst, dst)
bdr_dst := update(bdr_dst, dst)
End local computation.

Begin MPC computation.
mpc_dst := scatter(bdr_dist)

repeat 100:
nbr_dst := mapval(lambda (v,u): (v,u+1), join(map(lambda x,y: (y,x), graph), mpc_dst))
mpc_dst := reduce(min, union(mpc_dst, nbr_dst))

bdr_dst := gather(filter(keys(bdr_dst), mpc_dst))
End MPC computation.

dst := union(cmp_dst, bdr_dst)

Begin local computation.
repeat 100:

nbr_dst := mapval(lambda (v,u): (v,u+1), join(map(lambda x,y: (y,x), cmp_graph), dst))
dst := reduce(min, union(dst, nbr_dst))

cmp_dst := update(cmp_dst, dst)
bdr_dst := update(bdr_dst, dst)
End local computation.

Figure 16: Private computation of hop-distance to compromised nodes in a multi-institutional network.

To make this example more concrete, in Figure 16 we provide a simple algorithm implementation
using our language. Suppose each party holds private data describing its local network topology, as
well as which nodes within the network are compromised. The public network, the boundary nodes
(i.e., private nodes with edges leaving a party’s private network), and the compromised public

20

nodes are known to all participants. Each party computes the hop counts for its private nodes
locally, then employs MPC to compute the hop counts of its boundary nodes across the entire
graph without revealing its hop counts to the other parties. Finally, using the boundary node hop
counts, each party updates its private node hop counts locally.

6 Conclusions and Future Work
In this report we presented what we believe to be the first integration of MPC capabilities into
the widely-popular MapReduce programming paradigm. This integration allows programmers to
employ the same set of constructs to specify analysis algorithms that involves both MapReduce and
MPC operations. More importantly, it can provide for programmers a seamless way to compare
and contrast the efficiency of different strategies for structuring their implementation of analysis
algorithms on private data sets spread out across various administrative domains. Our on-going
work is proceeding along a number of different directions.

6.1 Development and Expansion of the Integrated Infrastructure

We view the language and associated architecture presented in this paper as providing a generic
framework that could support a host of different MapReduce and MPC implementations. Sup-
porting a diversity of analytics and infrastructures is necessary because the cloud environments
of multiple institutions are likely to be heterogeneous (e.g., using Hadoop versus Spark, or using
different flavors of MapReduce). More importantly, by supporting multiple MPC implementations
(e.g., Viff and Sharemind versus two-party computation frameworks such as ObliVM), it is possi-
ble to exploit different performance optimization opportunities, depending on the specifics of the
analysis problem at hand. Therefore, a major thrust of our ongoing work is to extend our coverage
of MapReduce and MPC implementations along these lines.

It is possible to generalize our architecture by refining the execution model of MPC tasks. Our
current prototype requires that all parties actively participate in an MPC task. However, it would
be beneficial to allow for configurations in which only a subset of worker nodes actively perform an
MPC task, while the other worker nodes contribute their data in secret shared form. This extension
will bring performance gains since the communication cost of many MPC protocols increases with
the number of active participants. It will also make our platform more flexible and diverse (as
discussed above), thus allowing for the support of frameworks such as Sharemind which require a
fixed number of active MPC participants.

We are also working on supporting alternative assumptions related to the privacy constraints
imposed on data, whether such data is an input to the analytics or whether such data is derived
and used to compute such analytics. For example, currently, our approach to integrating MPC into
MapReduce assumes that all the keys (i.e., the indices used in MapReduce) are public, whereas
the values associated with these keys are private. Such an assumption can be relaxed to leverage
currently on-going cryptography research that allows both the keys and the values to be treated as
secrets in a key-value store.

6.2 Development of the High-level Language and Formal Framework

We are working on further developing the high-level language components we presented in Section 4
in a number of ways: (1) by adding support for other common programming constructs, (2) by allow-
ing the compilation of subsets of existing high-level programming languages for describing analysis
algorithms into our language, (3) by exploiting known algebraic properties of the basic operations

21

in the language to optimize the compilation of the high-level analysis algorithm specification into
the low-level MapReduce and MPC operations. Another complementary research direction we are
pursuing is the extension of the formal framework (and associated static analysis techniques) to
support the automated derivation (directly from analysis algorithm implementations) of security
policies and performance characteristics such as accuracy, communication overhead, and running
time . We are also interested in developing accessible interfaces that convey the results of these
techniques to human users, as these can enable novel opportunities for data contributors and data
analysts to negotiate and cooperate in an informed way.

Given an automatically generated ensemble of analysis algorithm implementations and associ-
ated policies, it can be useful to report to data contributors the security consequences of each policy
as they pertain to the particular data stores they are contributing. Each of the policies derived
using a method such as the one described in Section 4.2 can be re-interpreted in a more human-
friendly way as a mapping from each data store to the level of disclosure the data will undergo
during and after the execution of the analysis algorithm. The level of disclosure can also include
any derived information that will be revealed (and whether that information will be derived from
individual data or data aggregated across all participants). Catch-all categories can be created for
particularly complex levels of disclosure (such categories should necessarily be highly conservative
and sound with respect to the privacy guarantees they are reported to imply).

Similarly, a particular analysis algorithm implementation can be automatically converted into an
abstract interpretation that predicts the communication overhead and running time of executing
the implementation. There are two possible ways this can be accomplished: (1) with concrete,
numeric approximations or exact measurements of the size of each initial key-value store (and
derived approximate bounds for intermediate stores), or (2) with abstract symbolic formulas (i.e.,
functions such as polynomials) parameterized by the sizes of the initial key-value stores. The former
is more likely to be computable using straightforward techniques when dealing with algorithm
implementations that are complex or operate on many initial or intermediate key-value stores. The
latter is more general and likely possible for simpler cases or subsets of a language (e.g., a library
of common components may pair each component with precomputed symbolic functions describing
its communication cost and running time). The latter approach has been employed in work on
domain-specific languages for describing quantum circuits [37].

For example, we consider the efficiency of arithmetic operations if Sharemind is used as the MPC
backend component [17]. Suppose that the high-level analysis algorithm description contains an
expression indicating that an addition operation must be performed on secret shared integer data.
In this case, it is known that this only requires every participant to perform an addition operation on
their own share of that data. On the other hand, a multiplication operation may require a collection
of additions and multiplications to be performed by each participant, as well as the passing of
multiple messages between all the participants. A set of inference rules over expression syntax trees
involving addition and multiplication operations can specify how to recursively assemble a symbolic
function describing the communication overhead (parameterized by the number of participants
running the MPC protocool). Using these rules, it would be possible to construct a function
describing the running time for that particular expression.

One way in which data contributors and data analysts can benefit from an accurate understand-
ing of the tradeoffs that affect the security and performance characteristics of an analysis algorithm
implementation is that this understanding can allow them to “negotiate” and choose among anal-
ysis algorithm implementations in an informed way. The parties involved in the negotiations can
be cognizant of the constraints under consideration (e.g., allowance for performance vs. allowance
for privacy leakage), and may even be able to determine and provide adequate compensation, if
necessary, in a marketplace setting [16] that monetizes access to private data [?]. Supporting such

22

a marketplace would require the definition of a partial order on data security policies within the
formal framework (so that it is possible to determine whether a given policy conforms to the policy
specified by a data contributor), as well as user-friendly facilities for associating analysis algorithm
implementation variants with corresponding policies.

Acknowledgements
This work was supported in part by NSF Grants: #1430145, #1414119, #1347522, and #1012798.

References
[1] 100% Talent: The Boston Women’s Compact. http://www.cityofboston.gov/women/

workforce/compact.asp. [Accessed: August 15, 2015].

[2] ACSC: MassInsight Advanced Cyber Security Center. http://www.acscenter.org/. [Ac-
cessed: August 15, 2015].

[3] NCI Cancer Genomics Cloud Pilots. https://cbiit.nci.nih.gov/ncip/nci-cancer-
genomics-cloud-pilots/. [Accessed: August 15, 2015].

[4] Open Science Data Cloud. https://www.opensciencedatacloud.org/. [Accessed: August
15, 2015].

[5] SCOPE: A Smart-city Cloud-based Open Platform and Ecosystem. https://www.bu.edu/
hic/research/scope/. [Accessed: August 15, 2015].

[6] Spark Python API Docs. http://spark.apache.org/docs/latest/api/python/. [Accessed:
August 15, 2015].

[7] The Boston Women Workforce Council. http://www.cityofboston.gov/women/workforce/.
[Accessed: August 15, 2015].

[8] The Commonwealth of Massachusetts: Bill H.1733 189th – An Act to establish pay equity.
https://malegislature.gov/Bills/189/House/H1733. [Accessed: August 15, 2015].

[9] The Massachusetts Open Cloud Project at Boston University. http://www.bu.edu/moc/.
[Accessed: August 15, 2015].

[10] ThreatExchange. https://threatexchange.fb.com/. [Accessed: August 15, 2015].

[11] Twisted. http://twistedmatrix.com/. [Accessed: August 15, 2015].

[12] US Congress Paycheck Fairness Act. https://en.wikipedia.org/wiki/Paycheck_
Fairness_Act. [Accessed: August 15, 2015].

[13] VIFF, the Virtual Ideal Functionality Framework. http://viff.dk/. [Accessed: August 15,
2015].

[14] David W Archer, Dan Bogdanov, Benny Pinkas, and Pille Pullonen. Maturity and performance
of programmable secure computation. 2015.

23

http://www.cityofboston.gov/women/workforce/compact.asp
http://www.cityofboston.gov/women/workforce/compact.asp
http://www.acscenter.org/
https://cbiit.nci.nih.gov/ncip/nci-cancer-genomics-cloud-pilots/
https://cbiit.nci.nih.gov/ncip/nci-cancer-genomics-cloud-pilots/
https://www.opensciencedatacloud.org/
https://www.bu.edu/hic/research/scope/
https://www.bu.edu/hic/research/scope/
http://spark.apache.org/docs/latest/api/python/
http://www.cityofboston.gov/women/workforce/
https://malegislature.gov/Bills/189/House/H1733
http://www.bu.edu/moc/
https://threatexchange.fb.com/
http://twistedmatrix.com/
https://en.wikipedia.org/wiki/Paycheck_Fairness_Act
https://en.wikipedia.org/wiki/Paycheck_Fairness_Act
http://viff.dk/

[15] Rich Barlow. Computational Thinking Breaks a Logjam. http://www.bu.edu/today/2015/
computational-thinking-breaks-a-logjam/. [Accessed: August 15, 2015].

[16] Azer Bestavros and Orran Krieger. Towards an open cloud marketplace: Vision and first steps.
IEEE Internet Computing: View from the Cloud, January 2014.

[17] Dan Bogdanov. How to securely perform computations on secret-shared data. Master’s thesis,
Tartu University, 2007.

[18] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. How the estonian tax and cus-
toms board evaluated a tax fraud detection system based on secure multi-party computation.
In Financial Cryptography and Data Security - 19th International Conference, FC 2015, San
Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers, LNCS. Springer, 2015. To
appear.

[19] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A Framework for Fast Privacy-
Preserving Computations. In Sushil Jajodia and Javier Lopez, editors, Proceedings of the
13th European Symposium on Research in Computer Security - ESORICS’08, volume 5283 of
Lecture Notes in Computer Science, pages 192–206. Springer Berlin / Heidelberg, 2008.

[20] Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure multi-party computation
for financial data analysis. In AngelosD. Keromytis, editor, Financial Cryptography and Data
Security, volume 7397 of Lecture Notes in Computer Science, pages 57–64. Springer Berlin
Heidelberg, 2012.

[21] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. In John H. Reif, editor, Proceedings on 34th Annual
ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada,
pages 494–503. ACM, 2002.

[22] Kevin M. Carter, Nwokedi C. Idika, and WilliamW. Streilein. Probabilistic threat propagation
for network security. IEEE Transactions on Information Forensics and Security, 9(9):1394–
1405, 2014.

[23] Lucian Constantin. IBM opens up its threat data as part of new security intelligence sharing
platform. http://www.infoworld.com/article/2911154/security/ibm-opens-up-its-
threat-data-as-part-of-new-security-intelligence-sharing-platform.html. [Ac-
cessed: August 15, 2015].

[24] Ivan Damgård, Marcel Keller, Enrique Larraia, Christian Miles, and Nigel P Smart. Imple-
menting aes via an actively/covertly secure dishonest-majority mpc protocol. In Security and
Cryptography for Networks, pages 241–263. Springer, 2012.

[25] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P.
Smart. Practical Covertly Secure MPC for Dishonest Majority – Or: Breaking the SPDZ
Limits, pages 1–18. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[26] Varsha Dani, Valerie King, Mahnush Movahedi, and Jared Saia. Quorums quicken queries:
Efficient asynchronous secure multiparty computation. In Distributed Computing and Net-
working, pages 242–256. Springer, 2014.

24

http://www.bu.edu/today/2015/computational-thinking-breaks-a-logjam/
http://www.bu.edu/today/2015/computational-thinking-breaks-a-logjam/
http://www.infoworld.com/article/2911154/security/ibm-opens-up-its-threat-data-as-part-of-new-security-intelligence-sharing-platform.html
http://www.infoworld.com/article/2911154/security/ibm-opens-up-its-threat-data-as-part-of-new-security-intelligence-sharing-platform.html

[27] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clus-
ters. In OSDI’04: Sixth Symposium on Operating System Design and Implementation, San
Francisco, CA, December 2004.

[28] John Dix. New England security group shares threat intelligence, strives to bol-
ster region as cybersecurity mecca, Network World, December 2014. http://www.
networkworld.com/article/2860073/security0/new-england-security-group-shares-
threat-intelligence-strives-to-bolster-region-as-cybersecurity-me.html. [Ac-
cessed: August 15, 2015].

[29] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Resource aware ML. In P. Madhusudan
and Sanjit A. Seshia, editors, Computer Aided Verification - 24th International Conference,
CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings, volume 7358 of Lecture Notes in
Computer Science, pages 781–786. Springer, 2012.

[30] Jan Hoffmann and Zhong Shao. Type-based amortized resource analysis with integers and
arrays. In Michael Codish and Eijiro Sumii, editors, Functional and Logic Programming -
12th International Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6, 2014. Proceedings,
volume 8475 of Lecture Notes in Computer Science, pages 152–168. Springer, 2014.

[31] Jan Hoffmann and Zhong Shao. Automatic static cost analysis for parallel programs. In Jan
Vitek, editor, Programming Languages and Systems - 24th European Symposium on Program-
ming, ESOP 2015, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9032 of Lecture
Notes in Computer Science, pages 132–157. Springer, 2015.

[32] Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut Veith. Secure two-party
computations in ansi c. In Proceedings of the 2012 ACM conference on Computer and com-
munications security, pages 772–783. ACM, 2012.

[33] Florian Kerschbaum. Automatically optimizing secure computation. In Proceedings of the 18th
ACM conference on Computer and communications security, pages 703–714. ACM, 2011.

[34] Florian Kerschbaum, Thomas Schneider, and Axel Schröpfer. Automatic protocol selection in
secure two-party computations. In Applied Cryptography and Network Security, pages 566–584.
Springer International Publishing, 2014.

[35] Benjamin Kreuter, Abhi Shelat, Benjamin Mood, and Kevin RB Butler. Pcf: A portable
circuit format for scalable two-party secure computation. In Usenix Security, volume 13, pages
321–336, 2013.

[36] Andrei Lapets, Eric Dunton, Kyle Holzinger, Frederick Jansen, and Azer Bestavros. Web-
based Multi-Party Computation with Application to Anonymous Aggregate Compensation
Analytics. Technical Report BUCS-TR-2015-009, CS Dept., Boston University, August 2015.

[37] Andrei Lapets and Martin Rötteler. Abstract Resource Cost Derivation for Logical Quantum
Circuit Descriptions. In Proceedings of the 1st Workshop on Functional Programming Concepts
in DSLs (FPCDSL 2013), Boston, MA, USA, September 2013.

[38] John Launchbury, Dave Archer, Thomas DuBuisson, and Eric Mertens. Application-scale
secure multiparty computation. In Programming Languages and Systems, pages 8–26. Springer,
2014.

25

http://www.networkworld.com/article/2860073/security0/new-england-security-group-shares-threat-intelligence-strives-to-bolster-region-as-cybersecurity-me.html
http://www.networkworld.com/article/2860073/security0/new-england-security-group-shares-threat-intelligence-strives-to-bolster-region-as-cybersecurity-me.html
http://www.networkworld.com/article/2860073/security0/new-england-security-group-shares-threat-intelligence-strives-to-bolster-region-as-cybersecurity-me.html

[39] Yehuda Lindell and Benny Pinkas. Secure multiparty computation for privacy-preserving data
mining. Journal of Privacy and Confidentiality, 1(1):5, 2009.

[40] Joanne Lipman. Let’s Expose the Gender Pay Gap. http://www.nytimes.com/2015/08/13/
opinion/lets-expose-the-gender-pay-gap.html. [Accessed: August 15, 2015].

[41] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. Oblivm: A pro-
gramming framework for secure computation. In IEEE S & P, 2015.

[42] Dahlia Malkhi, Noam Nisan, Benny Pinkas, Yaron Sella, et al. Fairplay-secure two-party
computation system. In USENIX Security Symposium, volume 4. San Diego, CA, USA, 2004.

[43] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft, and Elaine Shi.
Graphsc: Parallel secure computation made easy. In 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 377–394. IEEE Computer
Society, 2015.

[44] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. Wysteria: A programming language
for generic, mixed-mode multiparty computations. In Proceedings of the 2014 IEEE Symposium
on Security and Privacy, SP ’14, pages 655–670, Washington, DC, USA, 2014. IEEE Computer
Society.

[45] Aseem Rastogi, Piotr Mardziel, Michael Hicks, and Matthew A Hammer. Knowledge inference
for optimizing secure multi-party computation. In Proceedings of the Eighth ACM SIGPLAN
workshop on Programming languages and analysis for security, pages 3–14. ACM, 2013.

[46] Axel Schroepfer and Florian Kerschbaum. Forecasting run-times of secure two-party compu-
tation. In Quantitative Evaluation of Systems (QEST), 2011 Eighth International Conference
on, pages 181–190. IEEE, 2011.

[47] Axel Schröpfer, Florian Kerschbaum, and Günter Müller. L1-an intermediate language for
mixed-protocol secure computation. In Computer Software and Applications Conference
(COMPSAC), 2011 IEEE 35th Annual, pages 298–307. IEEE, 2011.

[48] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[49] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop dis-
tributed file system. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on, pages 1–10. IEEE, 2010.

[50] Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac Flanagan, and
Stephen Chong. End-to-end policy-agnostic security for database-backed applications. CoRR,
abs/1507.03513, 2015.

[51] Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual Sympo-
sium on Foundations of Computer Science, SFCS ’82, pages 160–164, Washington, DC, USA,
1982. IEEE Computer Society.

[52] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.
Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX conference on
Hot topics in cloud computing, volume 10, page 10, 2010.

[53] Mahdi Zamani, Mahnush Movahedi, and Jared Saia. Millions of millionaires: Multiparty
computation in large networks. IACR Cryptology ePrint Archive, 2014:149, 2014.

26

http://www.nytimes.com/2015/08/13/opinion/lets-expose-the-gender-pay-gap.html
http://www.nytimes.com/2015/08/13/opinion/lets-expose-the-gender-pay-gap.html

	Introduction
	Secure Multi-Party Computation
	Integration of Secure MPC into the MapReduce Paradigm
	A Formal Framework for Privacy-Performance Tradeoffs
	Organization

	Related Work
	Infrastructure Integrating MapReduce and MPC
	Implementation Details
	Deployment Example
	Compilation of Analysis Algorithms
	Execution of Job Specifications

	High-Level Language and Formal Framework
	High-level Language for Analysis Algorithm Implementations
	Exploring Tradeoffs through Derivation of Hybrid Implementations

	Example Applications
	Computing Aggregate Compensation Statistics
	Collaborative Threat Analysis: Computing Hop Counts to Compromised Nodes

	Conclusions and Future Work
	Development and Expansion of the Integrated Infrastructure
	Development of the High-level Language and Formal Framework

