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Abstract

In research areas involving mathematical rigor, there are numerous benefits to adopting a formal
representation of models and arguments: reusability, automatic evaluation of examples, and verification
of consistency and correctness. However, accessibility has not been a priority in the design of formal
verification tools that can provide these benefits. In earlier work [30] we attempt to address this broad
problem by proposing several specific design criteria organized around the notion of a natural context : the
sphere of awareness a working human user maintains of the relevant constructs, arguments, experiences,
and background materials necessary to accomplish the task at hand. In this report we evaluate our
proposed design criteria by utilizing within the context of novel research a formal reasoning system that
is designed according to these criteria. In particular, we consider how the design and capabilities of
the formal reasoning system that we employ influence, aid, or hinder our ability to accomplish a formal
reasoning task – the assembly of a machine-verifiable proof pertaining to the NetSketch formalism.

NetSketch is a tool for the specification of constrained-flow applications and the certification of de-
sirable safety properties imposed thereon. NetSketch is conceived to assist system integrators in two
types of activities: modeling and design. It provides capabilities for compositional analysis based on
a strongly-typed domain-specific language (DSL) for describing and reasoning about constrained-flow
networks and invariants that need to be enforced thereupon. In a companion paper [13] we overview
NetSketch, highlight its salient features, and illustrate how it could be used in actual applications. In
this paper, we define using a machine-readable syntax major parts of the formal system underlying the
operation of NetSketch, along with its semantics and a corresponding notion of validity. We then provide
a proof of soundness for the formalism that can be partially verified using a lightweight formal reasoning
system that simulates natural contexts. A traditional presentation of these definitions and arguments
can be found in the full report on the NetSketch formalism [12].

1 Introduction and Motivation

In research that requires mathematical rigor there exist many benefits to adopting a formal representation.
These include reusability, automatic evaluation of examples, and the opportunity to employ automated
verification. There exist a variety of such systems, and many of these have been surveyed and compared
along a variety of dimensions [54]. However, to date, broad accessibility and quality interface design has not
been a priority in the design of such systems. On the contrary, researchers hoping to enjoy the benefits of
formal verification are presented with a variety of obstacles, both superficial and fundamental. Consequently,
many researchers today choose to ignore such systems. In the literature in most domains of computer science
and mathematics there are only isolated attempts to include machine-verified proofs of novel research results.

To address the aforementioned issues, we have proposed in earlier work [30] principles for the design of
automated verifiers and assistants for formal reasoning. We argue that by following these principles it is
possible to assemble formal reasoning systems that have better accessibility and useability. These principles
require the adoption of what we consider lightweight design. In this context, lightweight design is not
exclusively a passive principle that consists of loosening restrictions. A system that is lightweight from the
user’s perspective might also provide robust and natural interfaces for search and interaction, might give
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the user many degrees of freedom in deciding how precisely or extensively arguments are verified, and might
actively anticipate and tighten what the user is trying to do using appropriate heuristics. This strategy
is based on our own understanding and experience as well as the observations that motivated other recent
projects with similar goals. In particular, the need for natural interfaces (both superficial and functional) and
the value of appropriate heuristics have been recognized to varying degrees by the designers of the Tutch
proof checker [2], the Scunak mathematical assistant system [16], the ForTheL language and SAD proof
assistant [52], the EPGY Theorem-Proving Environment [37], the ⌦MEGA proof verifier [46], and in the
work of Sieg and Cittadini [45]. One author, commenting on designing an interface for representing proofs,
opines that “we seem to be stuck at the assembly language level” [53]. Both the need for a natural interface
as well as the value of a lightweight design are also recognized by some in the model checking community,
such as the creators of the Alloy modelling language [29].

1.1 Natural Contexts in Lightweight Formal Verification

We focus our e↵orts by considering the notion of a natural context : the sphere of awareness a working human
user maintains of the relevant constructs, arguments, experiences, and background materials necessary to
accomplish the task at hand. The relevant characteristics of a natural context in such a scenario are (1)
its size (encompassing a wide array of experiences, potentially inconsistent or unrelated), and (2) a flexible
and powerful interface that allows easy exploration, querying, and short-term adjustments (using not just
reference or index but also structure). In explicitly recognizing the possibility that a natural context can
contain distinct, inconsistent collections of experiences (such as di↵erent logical systems), we are in part
inspired by the notion of a cognitive context found in literature on formal ontologies [39].

This notion can be a useful guide within the realm of formal reasoning. We hypothesize that a lightweight
verification system can be successful if it can maintain a highly rich and relevant context for the user, and
furthermore, if it allows the user to interact with this context in a familiar and e�cient manner. A concrete
example of a natural context familiar to those working in programming language design is a data structure
that maintains type signatures and constraints. Its interface consists of the programming language syntax,
the means for producing status or error messages, the type inference algorithm, and any constraint solver
supporting that algorithm.

1.2 Utilization for Novel Research: the NetSketch Formalism

In this work, we employ an implementation of a formal reasoning system1 designed to simulate a natural
context in accomplishing a novel research task that requires formal rigor: assembling an argument that the
NetSketch formalism is sound. In related work [13, 12], we present more extensively the background and
motivation underlying NetSketch and its underlying formalism, and we refer the reader interested in learning
more about this formalism to these materials. Here, we present only a brief introduction to NetSketch.

1.2.1 Constrained-Flow Networks

Many large-scale, safety-critical systems can be viewed as interconnections of subsystems, or modules, each
of which is a producer, consumer, or regulator of flows. These flows are characterized by a set of variables
and a set of constraints thereof, reflecting inherent or assumed properties or rules governing how the modules
operate (and what constitutes safe operation). Our notion of flow encompasses streams of physical entities
(e.g., vehicles on a road, fluid in a pipe), data objects (e.g., sensor network packets or video frames), or
consumable resources (e.g., electric energy or compute cycles).

Many complex, large-scale systems can be viewed at least in part as constrained-flow networks, and
current practices in the assembly of such systems involve the integration of various subsystems into a whole
by “system integrators” who may not possess expertise or knowledge of the internals of the subsystems on

1We employ a formal reasoning system implemented in Haskell; source code and a demonstration version of the system,
integrated with an online content management system, can be found at http://www.safre.org.
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which they rely. NetSketch [13] is a tool that assists system integrators in two types of activities: modelling
and design. As a modelling tool, NetSketch enables the abstraction of an existing (flow network) system
while retaining su�cient information about it to carry out future analysis of safety properties. As a design
tool, NetSketch enables the exploration of alternative safe designs as well as the identification of minimal
requirements for missing subsystems in partial designs. Formal analysis is at the heart of both of the above
modelling and design activities.

1.2.2 The NetSketch Formalism

Support for safety analysis in design and/or development tools such as NetSketch is based on sound for-
malisms that are not specific to (and do not require expertise in) particular domains. NetSketch enables
the composition of exact analyses of small subsystems by adopting a constrained-flow network formalism
that exposes the tradeo↵s between exactness of analysis and scalability of analysis. This is done using a
strongly-typed domain-specific language (DSL) for describing and reasoning about constrained-flow networks
at various levels of “sketchiness” (precision) along with invariants that need to be enforced thereupon. We are
interested in using a formal reasoning system to formally define NetSketch’s DSL and to prove its soundness
relative to appropriately-defined notions of validity.

There are a few essential concepts that constitute our formalism for compositional analysis of problems
involving constrained-flow networks. The formalism provides a language for defining networks – graphs
consisting of nodes and edges. Networks are constructed out of many instances of defined modules (small
network components). These are also graphs but are typically of a size that is su�ciently small for a complete
or exhaustive analysis. The formalism provides means for defining such modules and assembling them into
networks. If an analysis of the network is desired, it may be possible to take advantage of this modularity by
analyzing the components individually in a more precise manner, and then composing the results to analyze
the entire network. Analyses are represented using a language of constraints. If the engineer considers flows
across a network of modules, the relevant parameters describing this flow (e.g., the number of open lanes on
a highway, or the throughput of a network link) can be mathematically constrained for each instance of a
module. These constraints can model both limitations of modules and problems the engineer must solve.

Thus, the formalism consists of two intertwined languages: a language for describing networks composed
of modules, and a language for describing constraints governing flows across the network components. In
order to ensure that our system works correctly “under the hood”, it is necessary to define a precise semantics
for these languages, along with a rigorous notion of what it means for an analysis of a network to be “correct”.
Only once these are defined is it possible to provide a guarantee that the system is indeed safe to use.

1.3 Format of Presentation and Overview

All formal definitions and arguments within the text of this report that are parsed by the formal reasoning
system are presented within a framed box. An example is included below.

Assert for any x, y, z 2 R, if x > y and y > z then x > z.

It is worth noting that the raw LATEX source from which this report was compiled can be supplied directly
to the formal reasoning system we employed (including all the LATEX markup and informal exposition).

In Sections 2 and 3 we introduce the concepts that underlie our formalism. In Section 3, we use our
formal reasoning system to outline a semantics for constraint sets and network flows, and to define a notion of
validity in terms of which the soundness of the framework can be defined. In Section 4 we present the typed
DSL for network sketches. In Section 5 we assemble a proof of the soundness of the NetSketch formalism with
respect to its semantics. This proof can be partially verified using the automated lightweight verification
capabilities of our formal reasoning system. Finally, we review related work in Section 6 and present our
conclusions in Section 7.
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2 Modules: Untyped and Typed

We introduce several preliminary notions. For more detailed definitions, we refer readers to the full technical
report on the formalism [12].

Definition 1 (Syntax of Constraints). Let X = {x0, x1, x2, . . .} be an infinite set of parameters. The set
of constraints over N and X can be defined in extended BNF style, where we use metavariables n and x to
range over N and X , respectively:

e 2 Exp ::= n | x | e1 ⇤ e2 | e1 + e2 | e1 � e2 | . . .

c 2 Const ::= e1 = e2 | e1 < e2 | e1 6 e2 | . . .

We include in Const at least equalities and orderings of expressions. Possible extensions of Const include
conditional constraints, negated constraints, time-dependent constraints, and others. Within our formalism,
constraints in Const are part of a given flow network abstraction and may be arbitrarily complex; constraints
to be inferred or checked against the given constraints are from some restriction of Const, such as linear
constraints:

e 2 LinExp ::= n | x | n ⇤ x | e1 + e2

c 2 LinConst ::= e1 = e2 | e1 < e2 | e1 6 e2

We are adopting a lightweight approach in our machine-assisted verification of the formalism, so we do
not explicitly model the structure of the set of constraints. Instead, we introduce abstract constants and
predicates related to constraint sets.

Introduce the constant Const. Assume for any C, C is a constraint set i↵ C ✓ Const. Assume
for any C, if C is a constraint set then C is a set.

Introduce the constant X . Assume for any P , P is a parameter set i↵ P ✓ X . Assume
for any P , if P is a parameter set then P is a set.

Introduce the constant parameters. Assume for any C, if C ✓ Const then parameters(C) ✓ X .

⇤

Definition 2 (Untyped Modules). A module is a network component that is amenable to exhaustive analysis.
We specify an untyped module A by a four-tuple (A, I,O, C).

Assume for any A, I,O,C,
(A, I,O,C) is an untyped module

i↵
I ✓ parameters(C),
O ✓ parameters(C),
O \ I = ;, and
C ✓ Const.

⇤
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Definition 3 (Typed Modules). For a module (A, I, O, C) as specified in Definition 2, a typed specification
or typing for (A, I,O, C) is the untyped module specification paired with a constraint set C 0 from some
restricted space of constraints (as described in Definition 1).

Introduce the set operator : .

Assume for any A, I, O,C,C 0,
(A, I,O,C) : C 0 is a typed module

i↵
(A, I,O,C) is an untyped module,
C 0 ✓ Const, and
parameters(C 0) ✓ I [O.

A typing judgment (A, I,O, C) : C 0 may or may not be valid. The validity of judgments presumes a
formal definition of the semantics of modules, which we introduce in Section 3. ⇤

3 Semantics of Network Typings

A network typing, as defined precisely in Section 4 further below, is specified by an expression of the form
(M, I, O, C) : C where (M, I, O, C) is an untyped network and C is a finite set of constraints such that
parameters(C) ✓ I [O. In this section, we introduce the definition and semantics of constraints.

Definition 4 (Satisfaction of Constraints). Let Y ✓ X be a subset of the parameter space. Let V be a
valuation for Y, i.e., V is a map from Y to N. Suppose all expressions and constraints are written over
parameters in Y. We use “|=” to denote the satisfaction relation.

Introduce the set operator |=.

The interpretation of an expression relative to V is defined by induction over e 2 Exp:

V (e) =

8
>>>>>><

>>>>>>:

n if e = n,

V (x) if e = x 2 Y,

p if e = e1 ⇤ e2 & p = V (e1) ⇤ V (e2),
q if e = e1 + e2 & q = V (e1) + V (e2),
r if e = e1 � e2 & r = V (e1)� V (e2),

Satisfaction of a constraint by V is defined by cases over c 2 Const:

V |= e1 = e2 i↵ V (e1) = V (e2)
V |= e1 < e2 i↵ V (e1) < V (e2)
V |= e1 6 e2 i↵ V (e1) 6 V (e2)

Satisfaction of a set of constraints relative to V is defined in the natural way:

V |= {c1, . . . , cp} i↵ V |= c1 and . . . and V |= cp

⇤

We introduce several useful operators involving parameters, constraints, and network typings.
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Definition 5 (Comparison of Constraint Sets). We define a precise way of relating constraint sets to one
another in terms of constraint semantics.

Introduce the set operators V,WV.

Assume for any C,C 0,
if C ✓ Const, C 0 ✓ Const then

C V C 0

i↵
for all V 2 X ! N, V |= C implies V |= C 0.

Assume for any C,C 0, C WV C 0 i↵ C V C 0 and C 0 V C.

Naturally, any set implies all subsets of itself.

Assume for any C,C 0, C 0 ✓ C implies C V C 0.

⇤

Definition 6 (Closures of Constraint Sets). For a finite constraint set C, its closure is the set of all
constraints implied by C.

Introduce the constant closure. Assume for any C, closure(C) = {c|c 2 Const, C V {c}}.
Assume for any C, if C ✓ Const then closure(C) ✓ Const.

Naturally, a set is a subset of its own closure, and the closure of a set contains the closure of each of its
subsets.

Assume for any C, C ✓ closure(C).
Assume for any C,C 0, C ✓ C 0 implies closure(C) ✓ closure(C 0).

If the parameters of two constraint sets are disjoint, then the closure operation preserves the union operation
on these two constraint sets.

Assume for all C,C 0,
if parameters(C) \ parameters(C 0) = ; then closure(C [ C 0) = closure(C) [ closure(C 0).

Furthermore, the parameters of the closures of any such two constraint sets are also disjoint.

Assume for any C,C 0, parameters(C) \ parameters(C 0) = ;
implies parameters(closure(C)) \ parameters(closure(C 0)) = ;.

⇤
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Definition 7 (Restrictions on Constraint Sets). In subsequent definitions, we require the ability to restrict
a constraint set using particular parameter sets.

Introduce set operators �, ⌫.
Assume for any C,P ,

C ✓ Const and P ✓ X
implies that

C � P = {c|c 2 C, parameters(c) ✓ P},
C ⌫ P = {c|c 2 C, parameters(c) \ P 6= ;}.

Thus, C � P is the subset of C in which only parameters from P occur, and C ⌫ P is the subset of C in which
every constraint has an occurrence of a parameter from P . We present some facts about these operators.

Assume for any C,P , C � P ✓ C.
Assume for any C,P , C ⌫ P ✓ C.
Assume for any C,C 0, S, S0, if C ✓ C 0 and S ✓ S0 then C 0 � S0 V C � S.
Assume for any C,C 0, S, S0, if C ✓ C 0 and S ✓ S0 then C 0 ⌫ S0 V C ⌫ S.
Assume for any C,C 0, P, P 0,

parameters(C) \ parameters(C 0) = ;
implies that

(C ⌫ P ) [ (C 0 ⌫ P 0) = (C [ C 0) ⌫ (P [ P 0).

⇤

Definition 8 (Pre- and Post-conditions for Network Sketches). Let ((M, I, O, C) : C) be a typed network
sketch. Recall that parameters(C) ✓ I [O. We partition closure(C) into two subsets.

Introduce the constants pre, post. Assume for any M, I, O, C, C,
pre((M, I, O, C), C) = closure(C) � I,
post((M, I, O, C), C) = closure(C) ⌫ O = closure(C)� pre((M, I, O, C), C).

Note that while the parameters of pre(C) are all in I, the parameters of post(C) are not necessarily all in
O, because some constraints in C may contain both input and output parameters. For both operators, the
constraint set C for any network sketch implies the constraints in the pre and post constraint sets.

Assume for all M, I, O, C, C, C V pre((M, I, O, C), C).
Assume for all M, I, O, C, C, C V post((M, I, O, C), C).

⇤

In the full report describing our formalism [12], we introduce two di↵erent semantics, corresponding
to what we call “weak satisfaction” and “strong satisfaction” of typing judgements. Both semantics are
meaningful, corresponding to whether or not network nodes act as “autonomous systems”, i.e., whether
or not each node coordinates its action with its neighbors or according to instructions from a network
administrator. The definitions of “weak satisfaction” and “strong satisfaction” are very similar except that
the first involves an existential quantification and the second a universal quantification. In this report, we
introduce only the strong variant of satisfaction.
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Definition 9 (Satisfaction). Let V : I ! N be a fixed valuation of the input parameters of a network
(M, I, O, C).

Assume for any M, I, O, C, C, for any V ,
V |= ((M, I, O, C) : C)

i↵
V |= pre((M, I, O, C), C) implies that

for all V 0,
V ✓ V 0 and for all K 2 C, V 0 |= K

implies that
V 0 |= post((M, I, O, C), C).

There are several useful facts about the |= relation.

Assume for any V, V 0, C, if V ✓ V 0 and V |= C then V 0 |= C.
Assume for any V,C,C 0, if C V C 0 and V |= C then V |= C 0.
Assume for any V,C,C 0, V |= C and V |= C 0 i↵ V |= C [ C 0.

⇤

Definition 10 (Validity of Typings). Informally, a typing is strongly valid i↵, for every network flow satis-
fying pre((M, I, O, C), C), and for every way of channelling the flow through (M, I, O, C) that is consistent
with its internal constraints C, post((M, I, O, C), C) is satisfied.

Assume for any M, I, O, C, C,
((M, I, O, C) : C) is strongly valid

i↵
for all V 2 I ! N,

V |= ((M, I, O, C) : C).

⇤

4 Typed Network Sketches

We define a specification language to assemble modules together, also allowing for the presence of network
holes. This is a strongly-typed domain-specific language (DSL). For the sake of concision, we present only
the typed version of the DSL and refer readers interested in seeing separate presentations of both the untyped
and typed DSL to the full technical report presenting our formalism [12].

A network sketch is written as (M, I, O, C), where I and O are the sets of input and output parameters,
and C is a finite set of finite constraint sets. M is not a name but an expression built up from: (1) module
names and (2) the constructors conn, loop, and hole. A “network hole” can be viewed as a place-holders
with some associated attributes. In this presentation, each network hole hole(X, {M1, . . . ,Mn}) explicitly
contains a label X and a set of network sketches {M1, . . . ,Mn}. Any of the network sketches in {M1, . . . ,Mn}
can be interchangeably “placed” into this hole, depending on changing conditions of operation in the network
as a whole. This treatment of network holes di↵ers from the treatment in the technical report describing the
formalism [12], but only superficially.2

2In the full report’s treatment [12], a let-bound, labelled hole can only appear once within its scope. Our presentation
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Definition 11 (Syntax of Raw Network Sketches). We introduce the raw syntax in extended BNF style. The
formal expressions written according to the following BNF are said to be “raw” because they do not specify
how the internal constraints of a network sketch are assembled together from those of its subcomponents.
This is what the rules in Section 4.1 do precisely.

Introduce the constants conn, loop,hole.

A, B 2ModuleNames

X, Y, Z 2 HoleNames

✓ 2 X ! X
M, N 2 RawSketches ::=

A

| conn(✓, M, N)

| loop(✓, M)

| hole(X, {M1, . . . , Mn})

As a convention, we use upper-case letters to refer to modules and networks – from the early alphabet (A,
B) for modules and from the middle alphabet (M , N) for networks. Also note carefully that M and N are
metavariables, ranging over expressions in RawSketches; they do not appear as formal symbols in such
expressions written in full. By contrast, A and B are names of modules and can occur as formal symbols in
expressions of RawSketches. We assume that each occurrence of the same module or the same hole in a
raw sketch has its own private set of names. This invariant can be ensured using isomorphic renaming. For
a slightly more detailed discussion of how this can be accomplished, we refer readers to the full technical
report presenting the formalism [12]. ⇤

4.1 Type Inference Rules

When networks are connected (i.e. composed) with themselves or one another, maps are introduced that
relate the parameters that represent the output links of a network to parameters that represent the input
links of a network. By convention, these maps are represented using lowercase Greek letters (✓, �,  ).
We also introduce a function constraints that transforms a map ✓ into a corresponding set of constraints
{x = ✓(x)|x 2 dom(x)}. Because we are adopting a lightweight verification approach in which we do not
explicitly define the space Const, we do not explicitly define constraints.

Introduce the constant constraints. Assume for any ✓ 2 X ! X , constraints(✓) is a constraint set.

Each network (M, I, O, C) has a collection of constraint sets C as a component, and assembling multiple
modules using some of these rules requires that a complex operation on these collections be performed. We
summarize these operations in the definitions presented below. We refer readers to the full report describing
our formalism [12] for a more detailed discussion of the reasoning behind these operations.

“collapses” the let syntax within network sketches in the other report by placing directly within a hole’s syntax the set of
network sketches bound to that hole. It also becomes necessary to assume that all hole labels are unique, but this can easily
achieved through renaming. This change in the formalism presentation is motivated by a desire to simplify the formal definitions
and arguments by removing the need to maintain an explicit environment.
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Introduce the constants cn, lp,hl.

Assume for any C, C0, ✓,
cn(✓, C, C0) = {C [ C 0 [ constraints(✓)|C 2 C, C 0 2 C0}.

Assume for any C, ✓,
lp(✓, C) = {C [ constraints(✓)|C 2 C}.

Assume for any n, I,O, I 0, O0, C,
hl(n, I,O, I 0, O0, C) =

{Ci [ constraints(�) [ constraints( )|
i 2 {0, . . . , n},� 2 I 0 ! Ii, 2 Oi ! O0, C 2 C}.

We introduce a few properties of these operations with respect to satisfaction.

Assume for any V, C, ✓,
for all K 2 lp(✓, C), V |= K

implies that
for all K 0 2 C, V |= K 0.

Assume for any V, C, C0, ✓,
for all K 2 cn(✓, C, C0), V |= K

implies that
for all K 0 2 C, V |= K 0 and for all K 00 2 C0, V |= K 00.

Our inference rules are a means by which to inductively construct valid typing judgments. We indicate
that a typing judgment is valid by prefixing it with the ` (turnstile) symbol.

Introduce the constant `.

There are 5 inference rules: [Module], [Connect], [Loop], [Hole], and [Weaken]. We begin with the
base case, the inference rule [Module].

Assume for any A, I,O, C, C, C 0,
(A, I,O,C) : C 0 is a typed module, and
C V C 0

implies that
` (A, I,O, {C}) : C 0.

The rule [Connect] takes two network sketches, M and N , and returns a network sketch conn(✓, M, N)
in which some of the output parameters in M are identified with some of the input parameters in N according
to what ✓ prescribes. We present the inference rule [Connect].
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Assume for any M, I, O, C, C, N, I 0, O0, C0, C 0, ✓, for all I 00, O00, C 00,
` (M, I, O, C) : C,
` (N, I 0, O0, C0) : C 0,
✓ 2 O ! I 0, ✓ is injective,
I 00 = I [ (I 0 � ran(✓)),
O00 = O0 [ (O � dom(✓)),
C 00 = C [ C 0 � I 00 [O00, and
post((M, I, O, C), C) V pre((N, I 0, O0, C0), C 0) ⌫ ran(✓)

implies that
` (conn(✓, M, N), I 00, O00, cn(✓, C, C0)) : C 00.

Rule [Loop] takes one network sketch, M , and returns a new network sketch loop(✓, M) in which some
of the output parameters in M are identified with some of the input parameters in M according to ✓. We
present the inference rule [Loop].

Assume for any M, I, O, C, C, ✓, for all I 0, O0, C 0,
` (M, I, O, C) : C,
✓ 2 O ! I, ✓ is injective, and
I 0 = I � ran(✓),
O0 = O � dom(✓),
C 0 = C � I 0 [O0, and
pre((loop(✓, M), I 0, O0, lp(✓, C)), C 0) V pre((M, I, O, C), C)

implies that
` (loop(✓, M), I 0, O0, lp(✓, C)) : C 0.

The rule [Hole] is a little more complicated than the preceding rules. Each of the networks Mi that can
be placed into the hole must be typed, and the collection of constraint sets governing the hole (as defined
by hl further above) must take into consideration, for every network Mi, every possible permutation of the
domains of the maps � and  that connect Mi to the parameters of the hole. Furthermore, the hole’s
type must be equivalent to the type of each of the networks Mi under each possible permutation of the
connecting maps. Finally, the overall type C 0 of the hole itself must make it possible to satisfy the definition
of validity, so the side condition pre((M 0, I 0, O0, C0), C 0) V post((M 0, I 0, O0, C0), C 0) is stipulated. We present
the inference rule [Hole].

Assume for any n, X, M, I,O, C, C, for all M 0, I 0, O0, C0, C 0,
for all i 2 {0, . . . , n},

` (Mi, Ii, Oi, Ci) : Ci,
for all � 2 I 0 ! Ii, 2 Oi ! O0,

C 0 [ constraints(�) [ constraints( ) WV Ci,
M 0 = hole(X, {Mi|i 2 {0, . . . , n}}),
C0 = hl(n, I,O, I 0, O0, C),
pre((M 0, I 0, O0, C0), C 0) V post((M 0, I 0, O0, C0), C 0)

implies that
` (M 0, I 0, O0, C0) : C 0.

In the premises of each of the rules, we introduced crucial side conditions expressing a relationship that
must be satisfied by the derived types. These include any premises which are not typing judgments. Some of
these may appear restrictive at first, but the rule [Weaken] allows for the adjustment of derived types and
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constraints (in particular, their weakening) in order to satisfy the side conditions. We present the inference
rule [Weaken].

Assume for any M, I, O, C, C, C 0,
` (M, I, O, C) : C,
pre((M, I, O, C), C 0) V pre((M, I, O, C), C), and
post((M, I, O, C), C) V post((M, I, O, C), C 0)

implies that
` (M, I, O, C) : C 0.

5 Soundness

The inference rules for typed network sketches presented in Section 4 are sound with respect to both strong
and weak versions of validity. We present a machine-verifiable argument that the inference rules are sound
with respect to the strong version of validity, but the proof for the weak version is almost identical. In the
full technical report describing this formalist [12], we note within the proof any di↵erences that arise between
the proofs for the two kinds of validity.

5.1 Supporting Lemmas

The proof requires a few simple lemmas involving the operators introduced and defined in previous sections.
Because we are only interested in performing a lightweight automated verification of our proof, and because
we are fairly confident that these simple lemmas are valid, we do not provide proofs for these lemmas.
Our confidence in the correctness of our proof of soundness can be improved further by providing machine-
verifiable proofs for these lemmas.

Assume for any C,P, P 0, if P ✓ P 0 then C � P 0 � P = C � P .
Assume for any C,P, P 0, if P ✓ P 0 then closure(C � P 0) � P V closure(C) � P .
Assume for any V,C, P, P 0, if V |= C ⌫ P and V |= C � P 0 then V |= C � P 0 [ P .

5.2 Proof of Soundness

The claim is stated formally in Theorem 12. The theorem is proven by an inductive argument for which
there exists one base case.

Theorem 12 (Soundness). If ` (N, I, O, C) : C can be derived by the inference rules then for any V ,
V |= (N, I, O, C) : C.

Proof. The theorem holds by induction over the structure of the derivation ` (N, I, O, C) : C. Proposition
13 is the base case, and Propositions 14, 15, 16, and 17 cover the four possible inductive cases.

5.3 Base Case

Modules are the basis of our inductive proof. While it is possible to construct a module A with constraints C

for which no V exists that can satisfy C, our definitions of satisfaction and validity handle this by requiring
post constraints to be satisfied only when both C and the pre constraints are satisfied. Thus, any module
with unreasonably restrictive constraints is trivially valid. Under both these and more routine circumstances,
the premises for the inference rule [Module] ensure that all typed modules trivially satisfy our theorem.
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Proposition 13 (Module). If we have by the inference rule [Module] that ` (A, I,O, C) : C then it is the
case that V |= (A, I,O, C) : C.

Proof. The argument relies on our condition for constraints within the inference rule [Module].

Assert for any A, I,O,C,C 0,
(A, I,O,C), C 0 is a typed module and
C V C 0

implies that
for any V , if V |= pre((A, I,O, {C}), C 0) then

for all V 0 if V ✓ V 0 and for all K 2 {C}, V 0 |= K then
V 0 |= C,
C 0 V post((A, I,O, {C}), C 0), and
V 0 |= post((A, I,O, {C}), C 0).

5.4 Inductive Cases

Proposition 14 (Connect). If V |= (M, I, O, C) : C, V |= (N, I 0, O0, C0) : C 0, and we have by the inference
rule [Connect] that

` (conn(✓, M, N), I 00, O00, cn(✓, C, C0)) : C 00

then it is the case that V |= (conn(✓, M, N), I 00, O00, cn(✓, C, C0)) : C 00.

Proof. The argument is lengthy and relies in part on the fact that the parameters of the constraint sets for
the two networks M and N are disjoint.

Assert for any M, I, O, C, C, N, I 0, O0, C0, C 0, ✓, for all I 00, O00, C 00,
I,O are sets, I 0, O0 are sets, C is a constraint set, C 0 is a constraint set,
parameters(C) \ parameters(C 0) = ;,
` (M, I, O, C) : C,
` (N, I 0, O0, C0) : C 0,
✓ 2 O ! I 0, ✓ is injective,
I 00 = I [ (I 0 � ran(✓)),
O00 = O0 [ (O � dom(✓)),
C 00 = C [ C 0 � I 00 [O00, and
post((M, I, O, C), C) V pre((N, I 0, O0, C0), C 0) ⌫ ran(✓)

implies that
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for any V ,
if V |= ((M, I, O, C) : C) and V |= ((N, I 0, O0, C0) : C 0) then

if V |= pre((conn(✓, M, N), I 00, O00, cn(✓, C, C0)), C 00) then

pre((conn(✓, M, N), I 00, O00, cn(✓, C, C0)), C 00) = closure(C 00) � I 00,

V |= closure(C 00) � I 00,
V |= closure(C [ C 0 � I 00 [O00) � I 00,

closure(C [ C 0 � I 00 [O00) � I 00 V closure(C [ C 0) � I 00,

V |= closure(C [ C 0) � I 00,

closure(C [ C 0) � I 00 V closure(C) � I,

V |= closure(C) � I,

pre((M, I, O, C), C) = closure(C) � I,

V |= pre((M, I, O, C), C),

for all V 0, if V ✓ V 0 and for all K 0 2 cn(✓, C, C0), V 0 |= K 0 then
for all K 0 2 C, V 0 |= K 0 ,
V 0 |= post((M, I, O, C), C),
V 0 |= pre((N, I 0, O0, C0), C 0) ⌫ ran(✓),

pre((N, I 0, O0, C0), C 0) = closure(C 0) � I 0,

V 0 |= closure(C 0) � I 0 ⌫ ran(✓),

closure(C 0) � I 00 V closure(C 0) � (I 0 � ran(✓)),
closure(C [ C 0) � I 00 V closure(C 0) � I 00,

V 0 |= closure(C 0) � (I 0 � ran(✓)),

I 0 � ran(✓) ✓ I 0,
closure(C 0) � I 0 � (I 0 � ran(✓)) = closure(C 0) � (I 0 � ran(✓)),

V 0 |= closure(C 0) � I 0 � (I 0 � ran(✓)),

(I 0 � ran(✓)) [ ran(✓) = I 0,

V 0 |= closure(C 0) � I 0 � (I 0 � ran(✓)) [ ran(✓),
V 0 |= closure(C 0) � I 0 � I 0,
V 0 |= closure(C 0) � I 0,
V 0 |= pre((N, I 0, O0, C0), C 0),
V 0 |= (N, I 0, O0, C0) : C 0,
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for all V 00, if V 0 ✓ V 00 then
for all K 00 2 C0, V 0 |= K 00 and V 00 |= K 00, for all K 0 2 C0, V 00 |= K 0,
V 00 |= post((M, I, O, C), C),
V 00 |= post((N, I 0, O0, C0), C 0),

post((M, I, O, C), C) = closure(C) ⌫ O,
post((N, I 0, O0, C0), C 0) = closure(C 0) ⌫ O0,

V 00 |= closure(C) ⌫ O,
V 00 |= closure(C 0) ⌫ O0,
V 00 |= closure(C) ⌫ O [ closure(C 0) ⌫ O0,

closure(C) ⌫ O [ closure(C 0) ⌫ O0 = closure(C) [ closure(C 0) ⌫ O [O0,

V 00 |= closure(C) [ closure(C 0) ⌫ O [O0,

closure(C [ C 0) = closure(C) [ closure(C 0),

V 00 |= closure(C [ C 0) ⌫ O [O0,

C [ C 0 ✓ closure(C [ C 0),
C [ C 0 � I 00 [O00 ✓ C [ C 0,
O00 ✓ O [O0, C 00 ✓ C [ C 0,
closure(C 00) ✓ closure(C [ C 0),
closure(C [ C 0) ⌫ O [O0 V closure(C 00) ⌫ O00,
post((conn(✓, M, N), I 00, O00, cn(✓, C, C0)), C 00) = closure(C 00) ⌫ O00,

V 00 |= post((conn(✓, M, N), I 00, O00, cn(✓, C, C0)), C 00).

Proposition 15 (Loop). If V |= (M, I, O, C) : C and we have by the inference rule [Loop] that

` (loop(✓, M), I 0, O0, lp(✓, C)) : C 0

then it is the case that V |= (loop(✓, M), I 0, O0, lp(✓, C)) : C 0.

Proof. The proof takes advantage of the side conditions in the inference rule.

Assert for any M, I, O, C, C, ✓, for all I 0, O0, C 0,
M, I, O, C, I 0, O0, C 0 are sets,
` (M, I, O, C) : C,
✓ 2 O ! I, ✓ is injective, and
I 0 = I � ran(✓),
O0 = O � dom(✓),
C 0 = C � I 0 [O0, and
pre((loop(✓, M), I 0, O0, lp(✓, C)), C 0) V pre((M, I, O, C), C)

implies that
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for any V ,
if V |= ((M, I, O, C) : C) then

if V |= pre((loop(✓, M), I 0, O0, lp(✓, C)), C 0) then
V |= pre((M, I, O, C), C),
for all V 0,

if V ✓ V 0 and for all K 0 2 lp(✓, C), V 0 |= K 0 then
for all K 2 C, V 0 |= K,
V 0 |= post((M, I, O, C), C),

post((M, I, O, C), C) = closure(C) ⌫ O,

V 0 |= closure(C) ⌫ O,

O � dom(✓) ✓ O,
C � I 0 [O0 ✓ C,
closure(C) ⌫ O V closure(C 0) ⌫ O0,
post((loop(✓, M), I 0, O0, lp(✓, C)), C 0) = closure(C 0) ⌫ O0,

V 0 |= closure(C 0) ⌫ O0,
V 0 |= post((loop(✓, M), I 0, O0, lp(✓, C)), C 0).

Proposition 16 (Hole). If V |= (Mi, Ii, Oi, Ci) : Ci for i 2 {1, . . . , n} where M , I, O, and C are vectors,
and we have by the inference rule [Hole] that

` (hole(X, {M1, . . . ,Mn}), I 0, O0, C0) : C 0

then it is the case that V |= (hole(X, {M1, . . . ,Mn}), I 0, O0, C0) : C 0.

Proof. The proof is a straightforward application of the side conditions in the rule [Hole].

Assert for any n, X, M, I,O, C, C, for all M 0, I 0, O0, C 0, C0,
for all i 2 {0, . . . , n},

` (Mi, Ii, Oi, Ci) : Ci,
for all � 2 I 0 ! Ii, 2 Oi ! O0,
C 0 [ constraints(�) [ constraints( ) WV Ci,
M 0 = hole(X, {Mi|i 2 {0, . . . , n}}),
C0 = hl(n, I,O, I 0, O0, C),
pre((M 0, I 0, O0, C0), C 0) V post((M 0, I 0, O0, C0), C 0)

implies that
for any V , if V |= (M 0, I 0, O0, C0) : C 0 then

V |= pre((M 0, I 0, O0, C0), C 0)
implies that

V |= post((M 0, I 0, O0, C0), C 0),
for all V 0,

if V ✓ V 0 and for all K 2 hl(n, I,O, I 0, O0, C), V 0 |= K then
V 0 |= post((M 0, I 0, O0, C0), C 0).
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Proposition 17 (Weaken). If V |= (M, I, O, C) : C and we have by the inference rule [Weaken] that
` (M, I, O, C) : C 0 then it is the case that V |= (M, I, O, C) : C 0.

Proof. The argument is straightforward.

Assert for any M, I, O, C, C, C 0,
(M, I, O, C) : C,
pre((M, I, O, C), C 0) V pre((M, I, O, C), C), and
post((M, I, O, C), C) V post((M, I, O, C), C 0)

implies that
for any V ,

if V |= ((M, I, O, C) : C) then
V |= pre((M, I, O, C), C 0)

implies that
V |= pre((M, I, O, C), C) and
for all V 0,

if V ✓ V 0 and for all K 2 C, V 0 |= K then
V 0 |= post((M, I, O, C), C),
V 0 |= post((M, I, O, C), C 0).

6 Related Work

The work described in this report represents an e↵ort to apply to novel research a formal reasoning system
that is designed according to principles that emphasize usability and lightweight verification approaches.
However, the DSL and underlying formalism, modelled using a formal reasoning system in this report, is
itself a language designed according to such principles. It di↵ers most significantly in that it is intended for
use in specific domains that can be modelled as constrained-flow networks. As a result, there are two distinct
bodies of related work. We briefly review in Section 6.1 work that deals with the design of accessible and
lightweight formal reasoning systems, as well as the application of such systems in modelling formalisms.
We review in Section 6.2 related work on other formalisms that can be applied in domains which can be
modelled as constrained-flow networks.

6.1 Usability and Application of Formal Reasoning Systems

This report illustrates the usefulness of several characteristics of a formal reasoning system that is designed
to simulate a natural context. The interface of the system is familiar, straightforward, and requires no
explicit reference of facts as they are applied within a formal argument. These features are recognized as
important within several e↵orts and projects that have similar goals [2, 16, 52, 37, 46, 45]. Furthermore,
the system takes advantage of an extensive library of definitions and propositions dealing with common
mathematical concepts and provides native support for some of these concepts. This is inspired by work in a
subdiscipline of artificial intelligence that deals with the assembly and application of ontologies. Particular
examples include the Cyc Project [40] and Open Mind Common Sense [17, 18, 47, 31, 32].

There exist few examples of applications of lightweight formal reasoning systems within novel research.
Some examples include applications within cryptography [6, 8], security in computation [4, 7, 9, 5], and
economic mechanism design [48].

17



6.2 Formalisms for Modelling Constrained-flow Networks

Our formalism for reasoning about constrained-flow networks was inspired by and based upon formalisms
for reasoning about programs developed over the decades within the programming languages community.
While our work focuses in particular on networks and constraints on flows, there is much relevant work in
the community addressing the general problem of reasoning about distributed programs. However, most
previously proposed systems for reasoning in general about the behavior of distributed programs (Process
algebra [10], Petri nets [42], ⇧-calculus [38], finite-state models [34, 35, 36], and model checking [26, 27]) rely
upon the retention of details about the internals of a system’s components in assessing their interactions
with one another. While this a↵ords these systems great expressive power, that expressiveness necessarily
carries with it a burden of complexity. Such an approach is inherently not modular in its analysis: the
details maintained in a representation or model of a component are not easily introduced or removed.
Furthermore, these specifications are often wedded to particular methodologies and thus do not have the
generality necessary to allow multiple kinds of analysis, making it di�cult to reason about how systems
specified using di↵erent methodologies interact.

Discovering and enforcing bounds on execution of program fragments is a well-established problem in
computing [55], and our notion of types (i.e., linear constraints) for networks can be viewed as a generalization
of type systems expressing upper bounds on program execution times. Existing work on this problem includes
the aiT tool (described in [49], and elsewhere), which uses control-flow analysis and abstract interpretation to
provide static analysis capabilities for determining worst and best case execution time bounds. Other works,
belonging to what have been called Dependent Type Systems, provide capabilities for estimating an upper
bound on execution time and memory requirements via a formal type system that has been annotated with
size bounds on data types. These include (but are not limited to) Static Dependent Costs [43], Sized Type
Systems [28], and Sized Time Systems [33]. Many other Dependent Type Systems directly target resource
bounding for the real-time embedded community (e.g., the current incarnation of the Sized Time System
[23], Mobile Resource Guarantees for Smart Devices [3]).

More generally, there has been a large interest in applying custom type systems to domain specific
languages (which peaked in the late nineties, e.g., the USENIX Conference on Domain-Specific Languages
(DSL) in 1997 and 1999). Later type systems have been used to bound other resources such as expected heap
space usage (e.g., [25], [3]). The support for constructing, modelling, inferring, and visualizing networks and
properties of network constraints provided by our work is similar to the capabilities provided by modelling
and checking tools such as Alloy [29].

One of the essential activities our formalism aims to support is reasoning about and finding solution
ranges for sets of constraints that describe properties of a network. In its most general form, this is known as
the constraint satisfaction problem [51] and is widely studied [50]. One variant of the constraint satisfaction
problem relevant to our work involves only linear constraints. Finding solutions respecting collections of
linear constraints is a classic problem that has been considered in a large variety of work over the decades.
There exists a great deal of established material [44], including many documented algorithms [20, Ch. 29],
and many analyses of practical considerations [22]. However, most approaches consider a homogenous set of
constraints of a particular class.

The work in this paper extends and generalizes our earlier work in Traffic (Typed Representation and
Analysis of Flows For Interoperability Checks [11]), and complements our earlier work in Chain (Canonical
Homomorphic Abstraction of Infinite Network protocol compositions [15]).

While our formalism supports the specification and verification of desirable global properties and has a
rigorous foundation, it remains ultimately lightweight. By “lightweight” we mean to contrast our work to the
heavy-going formal approaches – accessible to a narrow community of experts – which are permeating much
of current research on formal methods and the foundations of programming languages (such as the work on
automated proof assistants [41, 24, 19, 21], or the work on polymorphic and higher-order type systems [1], or
the work on calculi for distributing computing [14]). In doing so, our goal is to ensure that the constructions
presented to users are the minimum that they might need to accomplish their task.
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7 Conclusions

We have utilized a formal reasoning system to define and reason about a novel compositional formalism
underlying a typed domain-specific language. This formalism can be used to model and assemble networks,
and to reason about and analyze constraints on flows through these networks. We showed that this formalism
is sound with respect to its semantics by providing a machine-verified proof of its correctness.

Simultaneously, we were able to demonstrate some of the advantages of using a lightweight formal rea-
soning system that simulates a natural context. We were able to define the semantics for our formalism
in a machine-readable representation that is also highly accessible to humans. We were able to use LATEX
syntax and to introduce user-defined infix operators thanks to the support provided by the formal reasoning
system’s flexible interface and parser. We were also able to take full advantage of the system’s native sup-
port for concepts in set theory by employing, without explicit references, laws that govern the relationships
between common operations in set theory. Despite the fact that only lightweight verification was employed,
the formal assembly process led to the discovery of a few minor errors, and to the simplification of a few
side conditions and definitions. The lightweight approach was actually beneficial in allowing us to easily
move around verified chunks of an argument without concern for context, something that would be di�cult
to do when using an interactive theorem proving environment. The lightweight approach also allowed us to
introduce and utilize a few lemmas without an explicit proof. We can further improve our confidence in the
correctness of our formal argument by providing machine-verifiable proofs of these simple lemmas.
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